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Abstract

Scientific image tampering is a problem that affects not only authors but also the general perception of the research
community. Although previous researchers have developed methods to identify tampering in natural images, these
methods may not thrive under the scientific setting as scientific images have different statistics, format, quality, and
intentions. Therefore, we propose a scientific-image specific tampering detection method based on noise inconsistencies,
which is capable of learning and generalizing to different fields of science. We train and test our method on a new
dataset of manipulated western blot and microscopy imagery, which aims at emulating problematic images in science.
The test results show that our method can detect various types of image manipulation in different scenarios robustly,
and it outperforms existing general-purpose image tampering detection schemes. We discuss applications beyond these
two types of images and suggest next steps for making detection of problematic images a systematic step in peer review
and science in general.
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1. Introduction

The use of digital images has become increasingly ubiq-
uitous in all types of publications. What comes with the
growing importance of digital images is the development
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of image tampering techniques. In the past, modifying or
concealing the content of an image would require dedicated
personnel and tools. Today, however, image tampering is
much easier with state-of-the-art image processing soft-
ware. This trend has affected many aspects of our society,
as we see prominent forgery cases occur in journalism and
academia [1]. Consequently, many detection techniques
have been developed for these scenarios (see [2]). Only
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recently, however, attention has been paid to image ma-
nipulation in scientific publications [3]. Although it is pos-
sible to use existing methods on scientific images directly,
we hypothesize that significant adaptations must be made
due to the fact that they usually possess distinctive statis-
tical patterns, formats and resolutions. In this work, we
aim at developing a scientific-specific image manipulation
detection technique, which we test on a novel scientific im-
age manipulation dataset of western blots and microscopy
imagery—there are no datasets openly available about sci-
entific image manipulation yet (but see [4]). Thus, as most
scientific images increasingly come in digital form, the de-
tection of possible manipulations should also get at the
same level of quality as other fields that use digital images
only.

It is undeniable that an increasing amount of tampered
images are finding their ways into scientific publications.
Bik, Casadevall and Fang [5] examined 20,621 biomedical
research papers from 1995 to 2014, where they find that at
least 1.9 percent are subject to deliberate image manipula-
tion. The fact that these suspicious papers went through
the careful reviewing process suggests how difficult it is
to examine image tampering in scientific research manu-
ally. Because the large quantity of digital images present
in submitted manuscript, it is be crucial for publishers to
be able to identify image manipulation in an automated
fashion.

The scientific research context sets a different toler-
ance for image manipulation. Many operations, including
resizing, contrast adjusting, sharpening, and white balanc-
ing are generally acceptable as part of the figure prepara-
tion process. However, some others types of tampering,
especially the ones that alter the image content semanti-
cally, are strictly prohibited. These manipulations include
copy-move (without proper attribution), splicing, removal,
and retouching1. Acuna, Brookes and Kording [6] devel-
oped a method to detect figure element reuse across a
paper database. Intra-image copy-move can be detected
rather robustly with SIFT features and pattern matching
[7]. However, detection of image manipulation that does
not involve reuse is significantly more challenging. A com-
prehensive scientific image manipulation detection pipeline
should include manipulation detection.

As scientific papers are reviewed by experts, we reckon
that articles containing manipulations that incur in con-
textual inconsistencies (e.g., brain activation patterns from
fMRI in the middle of a microscopy image) will be easily
picked out. What humans cannot see properly is the noise
pattern within an image—and scientists seeking to falsify
images exploit this weakness. Therefore, we propose a
novel image tampering detection method for scientific im-
ages, which is based on uncovering noise inconsistencies.
Specifically, our proposed method contains the following
features:

1https://ori.hhs.gov/education/products/RIandImages/
guidelines/list.html

1. It is based on supervised learning, which is capable of
learning from existing databases and new instances.

2. It works for images of different resolutions and from
different devices.

3. It is not restricted to any specific image format.
4. It is capable of generating good predictions with a

small training set.
5. It is flexible and can be fine-tuned for different fields

of science.

In section 2, we briefly summarize previous work on
digital image forensics. In section 3, we discuss the de-
sign of our proposed method. In section 4, we introduce
our scientific image manipulation datasets and present the
test results of our method on them. In section 5, we con-
clude by discussing limitations and future extension of our
method.

2. Previous Work

There have been a large amount of previous research
on image tampering detection, but very few of them focus
on scientific images. The first class of tampering detec-
tion methods aims at detecting a specific type of manip-
ulation, the most common being resizing and resampling
[8, 9, 10, 11, 12], median filtering [13, 14, 15, 16], contrast
enhancement [17, 18, 19, 20], blurring [21], and multiple
JPEG compression [22, 23, 24, 25]. Many of these manip-
ulations are valid in the scientific research context, and it
can be non-trivial to merge results from single detectors
in order to build a comprehensive one.

The second class of tampering detection methods aims
at general-purpose image tampering detection. Dirik and
Memon [26] try to catch the inconsistency of Color Filter-
ing Array (CFA) patterns within images taken by digital
cameras—a signal generated by digital cameras. However,
scientific images are not necessarily taken by digital cam-
eras. Wang, Dong and Tan [27] leverage the character-
istics of the DCT coefficients in JPEG images to achieve
tampering localization, but the method is confined to a
specific format. Mahdian and Saic [28] propose a method
that predicts tampered regions based on wavelet trans-
form and noise level estimation. All these methods are
unable to learn from data, which limits their abilities to
generalize to different fields. Another group of methods
combines steganalysis tools [29, 30] with Gaussian Mix-
ture Models (GMM) to identify potentially manipulated
regions [31, 32]. These unsupervised-learning-based meth-
ods are also unable to learn from existing database effec-
tively and therefore tend to underperform in practice.

Because of the occurrence of large image datasets, neural-
network-based tampering detection methods are likely to
yield good performance [33], especially those based on
Convolutional Neural Networks (CNN) [34, 35, 36]. They
usually target high resolution natural images. It is unclear,
however, whether they can be transitioned for the scien-
tific scenario. For example, it is challenging to train such
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a network for scientific images exclusively as they usually
require tens of thousands of images as training data, which
to the best of our knowledge is not yet available.

3. Our Proposed Method

Our method is based on a combination of several het-
erogeneous feature extractors that are later combined to
produce single predictions for patches (Figure 1). At first,
an input image will go through a variable amount of resid-
ual image generators. The type and amount of these gen-
erators can be chosen based on the application. Each type
of residual image will have its own feature extractor, which
is based on our proposed feature extraction scheme with
(possibly) different configurations. The features are then
fed into a classifier after post-processing.

The proposed method works on residual images, which
are essentially image after filtering or the difference be-
tween an image and its interpolated version. It is a way to
discard content and emphasize noise pattern within an im-
age, which is widely used in image manipulation detection
practice. However, in many previous works, only one type
of residuals is used [26, 32, 36]. Because each residual may
have different sensitivity levels to different types of ma-
nipulation, using only one not only limits the method’s
ability to detect a wide variety of manipulation, but also
renders the method more vulnerable against adversaries.
Therefore, we decide to combine a number of residuals in
our method to increase the robustness.

Because our feature extraction method drastically re-
duces the dimensionality of image data, which relieves the
need of a huge amount of training data, it is possible to
use a light-weight classifier as the back end, such as logis-
tic regression or support vector machine (SVM). As there
are many ways to generate residual images, and that the
feature extraction method comes with a number of param-
eters to decide, our image manipulation detection method
possesses high degree of flexibility. Unlike the parame-
ters in neural networks, for example, which are rather ob-
scure for human beings, the underlying meanings of the
parameters in our feature extraction method are straight-
forward. Therefore, it is easier for one to manually adapt
our method for different fields.

3.1. Residual Image Generators
There are numerous ways of generating residual im-

ages, we list the following ones because they are functional
for a wide range of applications. Note that the capability
of our method is significantly influenced by the choice of
residuals. However, it is possible to design new residual
image generators for specific scenarios.

1. Steganalytic Filters
Steganalysis (techniques used for detecting hidden
messages in communications) has been used in im-
age tampering detection practice extensively. This
type of analysis aims to expose hidden information

planted in images by steganography techniques. Al-
though it is not directly linked to image tampering
detection, it is suggested that that the tasks of image
forensics and steganalysis are very much alike when
the action of data embedding in steganography is
treated as image manipulating [37]. Similar to the
rich model strategy proposed in [29], we can apply
many different filters and see which one can spot in-
consistencies. In our work, we use several filters that
provide a relatively comprehensive view of potential
inconsistencies (Figure 2).
The filters selected are high-pass because we want to
throw away information about the image content and
emphasize noise patterns as much as possible. The
residual image in this case is the image after convo-
lution. An example of steganalytic filtering residual
is shown in Figure 3.

2. Error Level Analysis (ELA)
ELA is an analysis technique that targets JPEG com-
pression. The idea behind it is that the amount of
error introduced by JPEG compression is nonlinear:
a 90-quality JPEG image resaved at quality 90 is
equivalent to a one-time save of quality 81; a 90-
quality JPEG image resaved at quality 75 is equiv-
alent to a one-time save of quality 67.5 [38]; and so
on. If some part of a JPEG-compressed image is al-
tered with a different JPEG quality factor, when it
is compressed again, the loss of information of that
part will differ from other regions. To uncover the
inconsistency, ELA residual is computed by inten-
tionally resaving the image in JPEG format with a
particular quality (e.g. 90) and then computing the
difference of the two images. An example of ELA
residual is shown in Figure 4.

3. Median Filtering Residual
Median filtering can suppress the noise of an image.
When applying median filtering to a tampered im-
age, the tampered part may possess a different noise
pattern and therefore respond differently. The me-
dian filtering residual is the difference between the
original image and median filtered image. An exam-
ple is shown in Figure 5.

4. Wavelet Denoising Residual
Wavelet denoising is a type of denoising method that
represents an image in wavelet domain and cancels
the noise based on that representation. Similar to
the median filtering residual’s case, the tampered re-
gion may react differently compared to the rest of the
image and therefore give away its own identity. It is
also suggested by Dirik and Memon [26] that using
wavelet denoising can uncover the sensor noise in-
consistency of digital cameras. The wavelet denois-
ing residual is given by the difference between the
original image and the denoised image. An example
is shown in Figure 6.

It is worth noticing that the tampered images in the
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Figure 1: Overall design of our proposed method. The input image goes through several residual generators and feature extractors in parallel.
All extracted features will be merged in a postprocessing step and then fed to a classifier.
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Figure 2: High-pass filters selected in our experiment

demonstrations are selected so that the manipulation pat-
tern is visible in the specific residual. However, in practice,
this may not always be the case. Usually it is necessary
to examine multiple residual images before drawing a con-
clusion.

(a) Tampered
image

(b) Mask (c) Residual

Figure 3: Demonstration of steganalytic residual

(a) Tampered
image

(b) Mask (c) Residual
(color-mapped)

Figure 4: Demonstration of ELA residual

3.2. Feature Extraction
Our method is patch-based, which means it will gen-

erate a prediction for each patch in the image. Using
patches instead of single pixels to represent an image not
only shrinks the scale of computation, but also enriches
the amount of statistical information within each smallest
unit. At the limit, the patch size can be chosen so that
pixel-based and patch-based become almost the same. Af-
ter deciding on the patch size, the feature extraction step

(a) Tampered
image

(b) Mask (c) Residual
(color-mapped)

Figure 5: Demonstration of median filtering residual

(a) Tampered
image

(b) Mask (c) Residual
(color-mapped)

Figure 6: Demonstration of wavelet denoising residual

will generate a corresponding feature vector for each patch
in the image. In this section, we discuss how these features
vectors are computed.

3.2.1. Patch Reinterpretation
Residuals reduce the complexity of image data, but

they still have the same dimensionality as the original im-
age. To further compress data for classification, we pro-
pose a new feature extraction method for image tampering
detection. Intuitively, an image region is considered to be
tampered not because it is unique itself, but mainly due
to the fact that it is different from the rest of the image.
Therefore, an ideal feature design should contain sufficient
amount of global information. We add global information
by reinterpreting an image region using the rest of the im-
age.

First, an input image of size (h,w) will be divided into
patches of size (m,n). If the shapes are not divisible, the
image will be cropped to the nearest multipliers of each di-
mension. Therefore, an image of size (h,w) will be divided
into a patch matrix of size (bh/mc, bw/nc).

Then, the patch matrix will be split into a rectangular
patch grid of size (s, t), where each cell contains a certain

4
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Symbol Description

(h,w) size of the image

(m,n) dimension of each patch

(s, t) dimension of the patch grid

lij

the likelihood function of the
grid cell on ith row and jth col-
umn

Table 1: List of symbols used in feature extraction

number of patches. The number of patches in most cells
is

⌊bh/mc
s

⌋
×
⌊bw/nc

t

⌋
,

except for those cells on the edges, which may have fewer
patches.

For each cell in the grid, we fit an outlier detector that
is capable of telling the likelihood of a new sample being
an outlier. Given a patch p, it can be reinterpreted by a
vector v, which is given by

v = (l11(p), l12(p), l13(p), . . . , l1t(p),

l21(p), l22(p), l23(p), . . . , l2t(p),

l31(p), l32(p), l33(p), . . . , l3t(p),

· · ·
ls1(p), ls2(p), ls2(p), . . . , lst(p)).

An illustration of this reinterpretation method is shown
in Figure 7, where black blocks represent patches, red
blocks represent grid cells and the yellow region represents
the tampered region. In this case, (s, t) = (3, 4). Because
the tampered region has a different residual pattern, and
its contaminated patches concentrate in one of the cells,
the outlier detector of that cell will learn a distinct deci-
sion boundary compared to other ones. As a result, an
authentic patch pa will have lower outlier likelihood in all
components except for l23(pa); a tampered patch pt will
have higher outlier likelihood in all components except for
l23(pt). This difference in structure allows us to distin-
guish between authentic and tampered patches. In prac-
tice, we use the histogram of v (denoted by vh), which not
only encodes the structure in summary-statistics space,
but also becomes position invariant.

3.2.2. Feature Design
Besides vh, we include some other information in order

to concentrate more global information within the feature.
The final feature of a patch contains the following compo-
nents:

1. vh: the histogramed patch reinterpretation. After
generating all histogramed reinterpretations of an
image, we normalize them to [0, 1].

2. Proximity information: how much the patch differs
from its neighborhood. We choose the Euclidean dis-
tance between the histogramed reinterpretation of
the patch and those of its surrounding neighbors’.

1 2 3 t = 4

1

2

s = 3

m

n

Figure 7: Patch reinterpretation illustration. The parameters are
described in Table 1.

3. Global information: how much the patch differs from
the entire image. After computing the histogramed
reinterpretations for all patches within an image, we
apply k-means clustering on them, which generates
a set of weights and cluster centroids. The addi-
tional global information of a patch is given by the
Euclidean distance between the reinterpretation and
the cluster centroids, as well as the corresponding
weights of the centroids.

4. Experiments

Due to the lack of science-specific image manipulation
detection databases, we synthesize our own database for
the experiments.

4.1. Datasets
Our novel scientific image manipulation datasets mainly

consist of the following three types of manipulations:

1. Removal: covering an image region with a single
color or with noise. We manually select a rectan-
gular region to be removed from the image. Then
we select another rectangular region to sample the
color or noise to fill the removal region, where we
can compute the mean µ and standard deviation σ
of the pixels. We generate four images for each pair
of selection according to the configuration given in
Table 2.

Removal Region
Mean

Removal Region
Standard Deviation

µ 0
µ 0.5σ
µ σ
µ 2σ

Table 2: Image generation configuration of removals. There mean
of the removal region is equal to that of the sample region’s, but we
vary the standard deviation from zero (pure color) to two standard
deviations to create different visual effects.
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2. Splicing: copying content from another image. We
randomly choose a small region from the foreground
image and paste it at an arbitrary location on the
background image. To create noise inconsistency,
the region will either be recompressed with JPEG or
processed with sharpening filters.

3. Retouching: modifying the content of the image. We
will randomly choose a small region within an image
and apply Gaussian blurring to it.

These manipulations are selected because we believe that
they are more prevalent in problematic scientific papers.

We build two datasets that contain western blot im-
ages and microscopy images, respectively. We choose im-
ages around these two topics because of their frequency
in the literature huge, and they are more susceptible to
manipulation. We also create a natural image dataset to
compensate for the lack of microscopy images for train-
ing. It is only used in the training phase. The details of
datasets are shown in Table 4. The meanings of tampering
type abbreviations are shown in Table 3.

Abbreviation Meaning

R removal images
J splicing images recompressed by JPEG
F splicing images processed with sharpening filters
B Gaussian blurred images
G genuine images

Table 3: Tampering type abbreviations

Collection Image
Source

Contents2
Average

Resolution

western
blot

western blot im-
ages from the In-
ternet

R(436), G(51) 137, 244

mi-
croscopy

microscopy im-
ages from the
Internet

R(180), J(20),
F(19), B(20),

G(21)
591, 906

natural
image

natural images
from the “pris-
tine” collection of
IEEE dataset [39]

J(40), F(40),
B(40), G(40) 775, 328

Table 4: The specification of the proposed scientific image forensics
datasets.

4.2. Test Configurations
The sizes of images in the western blot collection are

significantly smaller. Therefore, we need to train a spe-
cial model for them. For the microscopy model, we added
natural images into the training set to compensate for the
lack of data. The patches from residual images are trans-
formed into frequency domain by Discrete Cosine Trans-
form (DCT) because it yields slightly better performance.

2format: type(number of images)

Within each model, the parameters of each feature ex-
tractor are the same. Detailed configurations of the two
models that we trained are shown in Table 5.

We use a one-class SVM outlier detector [40], provided
by scikit-learn [41], which is based on LIBSVM[42]. The
kernel we use is radial basis function, whose kernel coeffi-
cient (γ) is given by the scale, which is

1

number of features× variance of all inputs
.

The tolerance of optimization is set to 0.01; and ν (the
upper bound on the fraction of training errors and the
lower bound on the fraction of support vectors) is set to
0.1.

Note that the choice of parameters can significantly in-
fluence the speed of feature extraction. One of the most
expensive operations is fitting SVM, which has a compu-
tational complexity of O(N3), where N is the number of
patches in each grid cell. Therefore, it is important to
choose an appropriate (m,n) and (s, t) pair. With our
Python implementation and the configuration given in Ta-
ble 5, the extraction speed for western blots is approxi-
mately 212.36 sec/megapixel (12.13 sec/image), while the
extraction speed for microscopy images is approximately
86.15 sec/megapixel (49.32 sec/image). We tried to use
ThunderSVM[43], which is a GPU-accelerated SVM im-
plementation. Although it has a much higher speed, its
precision is not ideal compared to LIBSVM. Therefore,
our experiments are conducted with LIBSVM only.

The number of centroids of k-means clustering is set
to k = 6, and the clustering algorithm is run 150 times
with different initializations in order to get a best result.
We select this particular value of k because when we apply
k-means clustering to vh, the tampered region would usu-
ally blend with other clusters unless there are more than
6 centroids. Therefore, we consider it reasonable to rep-
resent the major content of an image by its first 6 cluster
centroids.

Patch
Dimension

Patch Grid
Dimension

# Training
Images

# Testing
Images

Western Blot (6, 6) (5, 5) 352 135

Microscopy (10, 10) (7, 7) 251 106

Table 5: Test configuration parameters

Because the dimensionality of the extracted feature is
not very high, the outputs of each feature extractor are
simply concatenated into a single feature vector and then
fed to the classifier. The classifier we use is a simple Mul-
tilayer Perceptron neural network. For the western blot
model, we use a four-layer network with 200 units per
layer; for the microscopy model, we use a similar network
with 300 units per layer. Softmax regression is applied to
the last layer to get the classification results.
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4.3. Test Results
The performance evaluation metric that we use are

patch-level accuracy, AUC scores, and F1 scores. We com-
pare the performance of our model with two baseline mod-
els, which are widely compared against in related papers:

1. CFA [26]: a method that uses nearby pixels to evalu-
ate the Camera Filter Array patterns and then pro-
duces the tampering probability based on the pre-
diction error.

2. NOI [28]: a method that finds noise inconsistencies
by using high pass wavelet coefficients to model local
noise.

For our method, the threshold for F1 score is 0.5. For
the baseline methods, their output map is normalized to
[0, 1], and the F1 score is acquired by setting the threshold
to 0.5.

Table 8 shows the accuracies of the three methods on
genuine images, where AUC and F1 scores does not apply.
Table 6 and 7 shows the AUC scores and F1 scores of our
methods compared to the baseline. The meanings of the
abbreviations can be seen in Table 3. The “overall” scores
are computed across the entire dataset, including genuine
images. A visual comparison of the results of each method
is shown in Figure 8.

It can be seen that CFA cannot handle western blot
images very well, as it has low accuracy on genuine im-
ages. Its performance on J, F and B tampering types are
also mediocre. NOI has better behavior at locating noisy
regions in the image, but it fails drastically when encoun-
tering manipulations that contain less noise. It constantly
treats R[0] and B manipulations as negatives, which yields
a false negative region that is not always separable. Its per-
formance on J images is not very satisfactory as well. Gen-
erally speaking, the performance of our method is more
consistent across different types of manipulations, which
makes it more reliable in practice.

5. Discussion And Conslusion

We have proposed a novel image tampering detection
method for scientific images, which is based on uncovering
noise inconsistencies. We use residual images to exploit
the noise pattern of the image, and we develop a new fea-
ture extraction technique to lower the dimensionality of
the problem so that it can be handled by a light-weight
classifier. The method is tested on a new scientific image
dataset of western blots and microscopy imagery. Com-
pare to two base line methods popular in the literature,
results suggest that our method is capable of detecting var-
ious types of image manipulations better and more consis-
tently. Thus, our solution promises to solve an important
part of image tampering in science effectively.

3format: R[noise standard deviation]

There are also some weaknesses in our study. First, our
proposed method is tested on a custom database, which
only contains a small amount of samples. We only include
several types of manipulations in our datasets, which is
rather monotonous compared to the space of all possible
image tampering techniques. Nonetheless, the choice of
these specific image sources and manipulation types is in-
spired by existing problematic papers. If our method is
capable of detecting these manipulations to some extent,
we believe that it can make valuable discoveries once put
into practice.

Second, we think that noise-inconsistency-based meth-
ods do possess certain limitations. For example, not all
manipulation will necessarily trigger noise inconsistency;
it is also easier for one to hide the noise inconsistency,
had he/she known the underlying mechanism of the auto-
matic detector. This kind of adversarial attack, however,
is significantly challenging and unlikely to be done by the
average scientist. In the future, we want to develop more
advanced methods that take both image content and noise
pattern into account.

However, our proposed method is one of the first meth-
ods that tackles scientific image manipulation directly. Put
together in screening pipelines for scientific publications
(similar to [6]), our method would significantly expand the
range of manipulations that could be captured at scale. It
also makes predictions based on many types of residuals,
which possesses improved robustness. The method a set of
easily adjustable parameters, which allows it to be adapted
for different fields with less effort and a smaller amount of
training data.

We would like to continue extending the database with
more images from various disciplines to make it standard
and comprehensive, and report test results on the updated
version. It is our hope that the datasets that we propose
can also be useful for the nascent Computational Research
Integrity research area. But we are also facing a major dif-
ficulty: there are no openly available datasets on images
that actually come from science (although see the efforts
in [4]). The images that we currently have are collected
from the Internet, and form a small but significant por-
tion of images with manipulation issues. Unfortunately,
access to problematic scientific images are tend to be re-
moved from the public soon after retraction. So far, nei-
ther publishers nor authors are yet willing to share those
images for understandable reasons. Hopefully, once scien-
tific image tampering detection methods prove their effi-
cacy, publishers and funders can start to share and cre-
ate datasets with proper safeguards to check for potential
problems during peer review – similar to how they do it
with full-text through the Crossref organization4.

4https://crossref.org
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Source Legends
Western Blot Microscopy IEEE Dataset [39] Splicebuster [32]

Image Mask Ours CFA NOI

Figure 8: Visual comparison of the results
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Tampering
Type Ours CFA NOI Tampering

Type Ours CFA NOI

W
es
te
rn

B
lo
t

R[0]3 0.939 0.606 0.026

M
ic
ro
sc
op

y

R[0] 0.924 0.780 0.027
R[0.5σ] 0.861 0.866 0.879 R[0.5σ] 0.903 0.925 0.887
R[σ] 0.923 0.877 0.968 R[σ] 0.968 0.940 0.959
R[2σ] 0.990 0.885 0.992 R[2σ] 0.966 0.937 0.978

J 0.994 0.639 0.618
F 0.868 0.629 0.913
B 0.805 0.334 0.104

overall 0.927 0.813 0.696 overall 0.925 0.864 0.695

Table 6: The AUC scores on datasets

Tampering
Type Ours CFA NOI Tampering

Type Ours CFA NOI

W
es
te
rn

B
lo
t

R[0] 0.834 0.039 0.003

M
ic
ro
sc
op

y

R[0] 0.834 0.039 0.000
R[0.5σ] 0.744 0.399 0.543 R[0.5σ] 0.745 0.398 0.560
R[σ] 0.867 0.553 0.712 R[σ] 0.867 0.414 0.773
R[2σ] 0.762 0.522 0.880 R[2σ] 0.762 0.378 0.896

J 0.966 0.038 0.045
F 0.623 0.139 0.360
R 0.476 0.016 0.001

overall 0.770 0.300 0.424 overall 0.738 0.329 0.455

Table 7: The F1 scores on datasets

Western Blot Microscopy

Ours CFA NOI Ours CFA NOI
0.988 0.513 0.838 0.988 0.774 0.920

Table 8: The accuracy scores on genuine images
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Estimating Probability of Image Features to
Support Figure Element Reuse Investigations

Daniel E. Acuna , Ziyue Xiang

Abstract—When there is a suspicious figure element reuse,
research integrity investigators often find it difficult to rebut
authors saying that “it happens by chance”. In this article, we
would like to provide a supporting tool for research integrity
investigators, which associates image features with their proba-
bilities to occur in scientific image space. If the probability of
the reused image feature is low, then the probability of the reuse
happening by chance is also low. To achieve this, we compute
the ORB features of all figures in the PMC Open Access Subset
and then applying k-means clustering with 20k centroids on
the transformed features. The distribution of image features is
acquired by employing probabilistic interpretation on k-means
clustering results.

Index Terms—ORB feature, probabilistic model, figure element
reuse investigation

I. INTRODUCTION

Figure element reuse (also known as copy-move forgery)
is a sigfinicant problem in science. Bik, Casadevall, and
Fang [1] manually inspected a total of 20,621 biomedical
research papers, only to find out that 3.8 percent of them
may contain problematic figures. They also conclude that
the prevalence of papers with problematic images has risen
markedly during the past decade. In order to assist editors
and research integrity investigators with uncovering suspicious
reuses, Acuna, Brookes, and Kording [2] proposed an auto-
mated reuse detection tool dedicated to this scenario.

However, the fact that the software finds out potential pairs
of reuse does not indicate research integrity investigators can
convict authors of misconduct confidently. Moreover, when
suspicious authors claim that the reuse happens “at random”,
it is usually very difficult for one to prove it wrong. Consider
the situation illustrated by Figure 1, in which the three images
patches are potentially reused patches found by reuse detection
software. Intuitively, the probabilities of such reuses occur at
random decreases from right to left. If the reused content
is text, then it is likely to be a false alarm. If the reused
content contains western blots, because it is possible for blots
to look extremely close, maybe it is a coincidence. If the
suspicion cannot be eliminated, one can require raw data or
ask the author to repeat the experiment. Nevertheless, if the
reused patch consists of microscopy images (or other highly
complicated contents), then the probability of this happening at
random is almost zero. It is shown that the content of somehow
defines the magnitude of suspicion.

The goal of this article is to determine the relationship
between content and suspicion. We quantify the suspicion by
measuring the probabilities of features within an image. The
overall probabilities of a image patch determines how unlikely

(1) (2) (3)

Fig. 1. Assume these three image patches are suspicious reuse regions found
by some software. These three patches contain microscopy, western blot and
text, respectively. Intuitively, the suspicion decreases from left to right. But it
is difficulty to justify it. The goal of this article is to provide an estimate of how
likely a reuse can happen by change by studying the probability distribution
of image features. The solution to this problem is shown in Figure 5.

a reuse can happen at random, which allows research integrity
investigators to reach a verdict with statistical confidence. The
flowchart of our work is shown in Figure 2. We acquire all
images in the PMC Open Access Subset [3] and compute
the top 500 ORB features [4] for each image. We apply
dimensionality reduction techniques to reduce the sparsity of
ORB features, which also transforms the binary ORB features
into numerical ones. In order to get the distribution of all
ORB features, we run a large-scale k-means algorithm on the
sampled dataset and employ probabilistic interpretation on the
clustering.

In section II, we briefly introduce the mechanisms of ORB
features. In section III, we discuss how to apply dimensionality
reduction to ORB features and how to build a probability
distribution from the k-means clustering. In section IV, we
discuss details of our implementation and analyze the results
of our experiments. In section V, we provide a conclusion for
this work.

II. DESCRIBING IMAGE KEYPOINTS WITH ORB FEATURES

ORB is an efficient, public-domain image keypoint detector
and descriptor [4]. Compared to other methods such as SIFT
[5] and SURF [6], ORB achieves similar performance with
much smaller time consumption. The two building blocks of
ORB are FAST keypoint detector [7], [8] and BRIEF feature
descriptor [9].

As suggested by its name, FAST detectors are widely used
because of the rapid computation. However, it does not provide
an orientation component. ORB suggests using the intensity
centroid [10] as an inexpensive way to estimate the angle of
a keypoint. The moments of a patch is given by

mpq =
∑

x,y

xpyqI(x, y),
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Fig. 2. The flowchart of our work. We acquire all images within the PMC Open Access Subset [3] and compute the top 500 ORB features [4] of each
image. We apply dimensionality reduction to decrease the sparsity of ORB data, and the new feature vectors are randomly sampled without replacement.
The resulting ~1.35× 108 records are fed into k-means clustering with 20k clusters. The distribution of ORB features is realized by employing probabilistic
interpretation on the clustering results.

where I(·) denotes the intensity of the pixel at a given point.
The intensity centroid of the patch writes

P =

(
m10

m00
,
m01

m00

)
.

We can construct a vector from the corner of the patch
(denoted by O) to P , and the orientation of the patch is given
by the orientation of

−−→
OP . It can be seen that the orientation

θ is

θ = atan2

(
m10

m00
,
m01

m00

)
= atan2(m01,m10),

where atan2 is the quadrant-aware arctan function. Since
FAST does not produce multi-scale features, a scale image
pyramid is built where FAST keypoints are detected at each
level. Also, due to the fact that FAST does not produce a
measure of cornerness, the Harris corner measure [10] is
introduced to rank the quality of each detected keypoint.

After acquiring the keypoints, their characteristics are com-
puted by the BRIEF descriptor. The BRIEF descriptor is a
bit string representation of an image constructed from a pre-
defined set of binary intensity tests. More concretely, assume
there are T point pairs (z

(1)
1 , z

(1)
2 ), . . . , (z

(T )
1 , z

(T )
2 ), where

z
(i)
j = (x

(i)
j , y

(i)
j ), the BRIEF descriptor is a T dimensional

binary vector B. The i-th component of B, which is denoted
by Bi, is given by

Bi =

{
1, if I(z(i)

1 ) < I(z
(i)
2 )

0, if I(z(i)
1 ) ≥ I(z(i)

2 ).

Although BRIEF features are easy and fast to compute, they
are not robust against rotations. Calonder, Lepetit, Strecha, et
al. [9] point out that this problem can be solved by creating
a set of rotations and perspective wraps of the image patch,
which is computationally expensive. An alternative solution,
which is called steered BRIEF, transforms the predefined point
pairs instead of the patch. In this case, we only need to apply
all transformations on the point pairs once to build up a series
of precomputed BRIEF templates and then choose the best
template during the actual computation step, which eliminates
the need of recalculating the image. Eventually, the BRIEF
template which has the rotation angle closest to θ will be used
to compute the BRIEF descriptor.

We compute ORB features with the OpenCV library [11],
where the value of T is set to be 256 by default.

III. MODELING THE DISTRIBUTION OF ORB FEATURES

Although for our purpose it is intuitive to use a generative
clustering model such as Gaussian Mixture Model (GMM),
the huge amount of data and clusters make it unfeasible to
solve the corresponding optimization problem. Instead, we
have to use a more scalable yet non-probabilistic approach:
we approximate the distribution of image features using the
results of the k-means algorithm.

A. Dimensionality reduction

We observe that the ORB feature space is sparse, as it is
supposed to be so for effective feature matching. In order to
study its distribution, we can decrease its sparsity by reducing
the dimensionality. We apply dimensionality reduction by
grouping every 16 bits of the ORB feature into one integer
that counts the number of ones in the bits. In this way, the 256
bit binary ORB feature generated by OpenCV is turned into
a 16 dimensional feature with numeric values, which allows
the use of k-means algoirithm.

Since feature matching with ORB is done by comparing the
hamming distance, which is essentially the squared Euclidean
distance between bits, it would be desirable that the hamming
distance of two ORB feature vectors before transformation
is strongly linearly correlated with the squared Euclidean
distance after transformation. To study the correlation, for
each hamming distance d = 1, 2, . . . , 30, we generate 200,000
pairs of random ORB feature vectors that have hamming
distance d, and then apply dimensionality reduction to them.
Then, we compute the Pearson correlation coefficient between
the hamming distance of original vectors and the squared
Euclidean distance of transformed vectors. The value of cor-
relation coefficient acquired is ρ = 0.807, which indicates
a strong linear correlation between the two quantities. This
suggests that the dimensionality reduction process preserves
the similarity of ORB features to some extent.

In the subsequent discussion, the terms “sample” and “fea-
ture vector” both refer to the ORB features after dimension-
ality reduction.

B. Probabilistic interpretation of k-means clustering results

Assume that we set the number of clusters in the k-
means algorithm to be K. Denote the j-th cluster by Cj ,
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Symbol Description

x
(t)
s the s-th component of t-th sample
K number of clusters of k-means clustering
Cj the j-th cluster
|Cj | the size of j-th cluster
N total number of samples
M the size of a feature vector

TABLE I
LIST OF SYMBOLS USED IN THIS SUBSECTION

j = 1, . . . ,K. k-means will assign a certain number of
samples to each cluster, that is

Cj = ∅, or

Cj = {x(j1), . . . ,x(j|Cj |)},
where |Cj | denotes the size of Cj . Let N be the total number
of samples, it is easy to see that

N =
K∑

j=1

|Cj |.

For each cluster j, we would like to model p(x | Ci). It is
common to apply the conditional independence assumption,
which indicates

p(x | Cj) =
M∏

i=1

p(xi | Cj),

where xi denotes the i-th component of the feature vector
and M denotes size of the feature vector. Since each xi takes
on discrete values, we can model p(xi | Cj) with categorical
distribution. To cope with missing values, we apply add-one
smoothing to the parameter estimations. Therefore, we have

p(xi = a | Cj) =

(∑|Cj |
s=1 1{x

(js)
i = a}

)
+ 1

|Cj |+ l
,

where 1{·} is the indicator function. Once we can compute
p(x | Cj), by the law of total probability, we can write

p(x) =
K∑

j=1

p(x | Cj)p(Cj),

where

p(cj) =
|Cj |
N

.

In order to estimate the scale of p(x) more precisely with
floating point arithmetic, we use the value of ln p(x) instead of
p(x). Meanwhile, the log-sum-exp trick is applied as follows:

p(x) =
K∑

j=1

exp {ln [p(x | Cj)p(Cj)]}

=
K∑

j=1

exp {ln p(x | Cj) + ln p(Cj)}

=
K∑

j=1

exp

{
M∑

i=1

ln p(xi | Cj) + ln p(Cj)

}
.

Therefore, if we let hj(x) be

hj(x) =
M∑

i=1

ln p(xi | Cj) + ln p(Cj),

a more numerically stable value of ln p(x) is given by

ln p(x) = ln




K∑

j=1

ehj(x)




= LogSumExp (h1(x), . . . , hK(x)) .

IV. COMPUTING & ANALYZING THE RESULTS

A. Getting the distribution

We acquire all 7,636,156 figures inside the PMC Open
Access Subset [3], which are considered the sample space
of all images. Then, we compute ORB features for the top
500 keypoints within the image and apply the dimensionality
reduction technique introduced in section III. For the k-means
algorithm, we use the kmcuda software [12], which supports
multiple GPU acceleration and a large number of clusters.
In our experiment, K is set to 20,000. Due to memory con-
straints, the clustering algorithm runs on a randomly sampled
subset of all data points, which contains 1/27 of all records.
The sampled subset contains approximately 1.35×108 records.

After clustering, the weight of each cluster (p(Cj)) is shown
in Figure 3. It can be seen that the weights of most clusters
are between 0.00004 and 0.00006, while there are are number
of clusters whose weights are greater than this range.

clusters
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

w
ei

gh
ts

Fig. 3. The weights of each cluster after k-means clustering.

B. Computing the ORB feature of any point in an image

So far, we have tried to acquire the distribution of top 500
keypoints within a known image in the data base. Given a new
image, we are interested in evaluating the similarity between
every single point in the image and existing keypoints in the
database, which is described in terms of probabilities.

To compute the ORB feature of an arbitrary point in the
image, we can apply modifications to OpenCV’s ORB feature
computation process. More specifically, for a given point in
an image, we compute its Harris response in each layer of
the image pyramid and select the layer with the highest
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Harris response. The orientation and BRIEF descriptor are then
computed within the best layer.

Since it is computationally expensive to estimate the prob-
ability of every single point in the image, we sample points
from the image uniformly and then apply linear interpolation
to the results. In our implementation, the sample distance is 3
pixels.

C. Analyzing the results

To verify the validity of our results, we select images
that only contain three prevalent figure elements in scientific
publications and compute the probability of image features
inside them. These three types of elements are microscopy
(which is close to natural images), western blot and text.
Examples of microscopy, western blot and text are shown in
Figure 6, 7 and 8 respectively. In Figure 6 and 7, irrelevant
regions are masked by black color.

From the results, we can see that microscopy photos are
rich in low probability features, for dark blue points can be
seen in the probability map frequently. For western blots, their
image features are of higher probability, as light blue and
white are the dominant colors in the probability map. Features
from text images have the highest probability, because red
points appear regularly. This is reasonable considering the
nature and the frequency of these three types of features in
scientific images. As we plot the histogram of image feature
probabilities (Figure 4), it can be seen that these three groups
of features possess three distinctive distributions. To further
study the significance of the result, we compute the mean log
probability of each image and use them to form observations
for each group. Then, a series of Welch’s t-tests (Table II) are
conducted to measure the difference among the distributions.
The p-values imply with strong confidence that the mean
probabilities of image features inside distinctive image groups
are different. This conform with our intuitions, as the contents
of microscopy images are highly complicated and unlikely
to be duplicated within the dataset, which accounts for their
lower probability. For blots and text, however, they should
have greater probabilities due to higher intra-group feature
similarity.

Test objects p-value

microscopy & western blots 3.045× 10−4

microscopy & text 7.825× 10−26

text & western blots 3.422× 10−13

TABLE II
p-VALUES OF WELCH’S T-TEST AMONG THE AVERAGE LOG PROBABILITY

OF EACH IMAGE GROUP.

Back to the problem raised by Figure 1. Our proposed
solution to it is shown in Figure 5. After computing the
probability map of image features within a given patch,
a research integrity investigator can reach a fact-supported
verdict by visually inspecting the output map or by analyzing
the mean probabilities.

−35 −34 −33 −32 −31
log probability

0

1

2

3

4

5

6

7

Microscopy
Blots
Text

Fig. 4. The histogram of image feature probabilities across three types of
images.

suspicous
reused
patches

(1) (2) (3)

feature
probability 

maps

mean (log)
probability -34.31 -33.41 -29.58

conclusion
highly 

suspicious
mildly

suspicious trivial

Fig. 5. Examples of using the distribution of ORB features to support figure
element reuse investigation.

V. CONCLUSION

In this paper, we proposed a tool that gives probabilities
of image features to support figure element reuse investiga-
tions. The probability distribution is acquired by employing
probabilistic interpretation on the k-means clustering of ORB
features acquired from the PMC Open Access Subset. To
reduce the sparsity of ORB features for better clusterings, we
apply similarity-preserving dimensionality reduction to them.
The statistical tests on the results of experiments show that
various groups of image contents tend to have distinctive
probability distributions, and that estimated probabilities of
these groups conform with our intuitions.
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Fig. 6. Examples showing the log probability of microscopy images.

Fig. 7. Examples showing the log probability of western blot images. Irrelevant regions are masked by black color.

Fig. 8. Examples showing the log probability of text images. Irrelevant regions are masked by black color.
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Better Performance Evaluation
For Image Tampering Localization

Ziyue Xiang

Abstract—Image tampering localization is one of the key tasks
of image forensics, which is receiving more attention recently
as the need of ensuring the authenticity of images increases.
However, the performance of related works are usually measured
by generic machine learning performance evaluation metrics
(e.g. accuracy, AUC, etc.). These metrics assume that samples
are independent from each other, which is not the case for
images because each image contains millions of pixels that are
correlated intrinsically. As a result, there is a discrepancy between
metric scores and the perceptual effectiveness. In this paper, we
demonstrate such inconsistencies by synthesizing output maps of
localization methods that possess a given metric score, allowing
readers to experience them visually. We also discuss how to design
perceptually consistent metrics, which server as a better indicator
of performance for human users.

This is an ongoing project. The expectations of this project is
listed in the last section.

Index Terms—image tampering localization, performance eval-
uation, perceptually consistent metric

I. INTRODUCTION

Nowadays, the use of digital images has become increas-
ingly ubiquitous. Modern digital formats such as JPEG and
PNG greatly compress the sizes of pixel data, therefore re-
ducing the cost of storage and transmission. The advancement
of sensor and image processing technologies enable portable
devices to produce photos whose qualities are comparable to
those taken by high-end digital cameras. As a result, the cover
image of magazines or websites can come from a normal
person with cell phone instead of a professional photographer
with DSLR camera; the proof of a paper document has
generally shifted from a scanned copy to a photo copy. What
comes with the growing importance of digital images is the
development of image tampering techniques. In the old days,
modifying or concealing the content of an image would require
dedicated personnels and tools. But at present time, after
several hours of training, many people can do as well as those
image tampering experts with the help of state-of-the-art image
processing softwares. Because the quantity of digital images is
too large to be examined manually, it is crucial for publishers,
government agencies and many other organizations to be able
to detect tampered images in an automatic fashion.

Due to the potential values of this problem, numerous
attempts have been made to resolve it. However, there has
not yet been a reliable industrial-grade solution to this date.
Many previous works focuses on tackling specific image
manipulation schemes, such as resizing and resampling [1]–
[5], median filtering [6]–[9], contrast enhancement [10]–[13],
multiple JPEG compression [14]–[17], etc. However, it is
non-trivial, if not challenging to merge the results of single

detectors in order to build a comprehensive one. Therefore re-
searchers also try to explore general-purpose image tampering
detection techniques. Wang, Dong, and Tan [18] make use of
the characteristics of the DCT coefficients to localize image
manipulation in JPEG images. Steganalytic tools start to find
their ways in image manipulation detection practice [19]–[21].
These tools are also combined with Gaussian Mixture Models
(GMM) to identify potentially manipulated clusters in the
image [22], [23]. Because of the high dimensionality of image
data, neural network based tampering detection method tend
to yield good performance [24], especially those based on
Convolutional Neural Networks (CNN) [25]–[27], albeit the
need of enormous amount of training data.

Because image tapering detection is usually done in pixel
or patch level, one should be able to tell the tampered region
based on the result as well. We observed the fact that, in
recent literature, the performance of tampering localization
techniques are evaluated by rather universal metrics, such
as accuracy, ROC curve, AUC, F-score and so on. These
metrics are designed for binary classification problems where
individual samples are independent. However, it is easy to see
that in the case of image tampering localization, the image
patches (pixels) that are fed into the classifier do not follow
the metrics’ design. As it will be shown in this article, these
metrics not very descriptive when applied to image tampering
detection practice.

In section II, we show how image tampering localization
techniques are often used and explain why general perfor-
mance measures become less ideal. In section III, we describe
our methodology of recreating the problems of existing per-
formance evaluation schemes. In section III, we demonstrate
the problem of existing performance metrics with illustrative
examples. In section V, we devise new and better metrics for
image tampering detection scenario.

II. TAMPERING LOCALIZATION, PERFORMANCE
EVALUATION AND HUMAN PERCEPTION

Due to the complexity of image tampering localization
problem, it is very unlikely for the user of an automatic
image tampering localization system to consider its results as
a final decision. That is to say, such systems usually serve
as an assistance to allow human inspectors to make better
judgments.

Usually the localization is done at patch level, where a patch
is a small region (say, 10 × 10) extracted from a rectangular
grid in the image (as shown in Figure 1). It is also possible
to achieve localization at pixel level, which has a smaller
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granularity and therefore higher precision, but there is little
difference between these two approaches essentially. Figure 1a
shows a pixel level mask, where the black region denotes the
tampered region; Figure 1b shows the patch level mask based
the pixel level mask and the grid. It can be seen that the patch
level approach is less accurate, but it is more commonly used
because a patch of image contains more statistical features
and reduces the dimensionality of image data (because there
are less patches than pixels). For simplicity, in the subsequent
discussion, we assume that the localization is done at patch
level.

(a) pixel level mask (b) patch level mask

Fig. 1. Illustration of masks of different granularities

In recent literature, authors usually use general purpose
machine learning performance evaluation metrics to assess
the effectiveness of image tampering localization methods.
The commonly used metrics include accuracy, AUC and F-
score. However, the image tampering localization scenario is
different from normal binary classification problems for the
following reasons:

1) A single image contains an enormous amount of inputs,
whose outputs need to be inspected as a whole

2) the inputs to the tampering localization classifier are not
independent

3) the goal of tampering localization is to generate human
perceivable results

These factors render these metrics less reflective in tamper-
ing localization scenario. Or at least their values should be
interpreted in a different manner.

For reference, we briefly introduce the concepts in perfor-
mance evaluation below:
• Terminology from a confusion matrix:

– True Positive (TP ): positive sample classified as
positive

– True Negative (TN ): negative sample classified as
negative

– False Positive (FP ): negative sample classified as
positive

– False Negative (FN ): positive sample classified as
negative

• Numeric derivations from a confusion matrix (each sym-
bol represents the count of that event, and P and N
denotes the count of all positives and negatives respec-
tively):

– recall = TP
P = TP

TP+FN
(a.k.a. true positive rate, tpr)

– fall-out = FP
N = FP

FP+TN

(a.k.a. false positive rate, fpr)
– precision = TP

TP+FP

– accuracy = TP+TN
P+N = TP+TN

TP+TN+FP+FN

– F-score = 2 · precision·recall
precision+recall = 2TP

2TP+FP+FN

• Definition of ROC curve and AUC:
– The ROC curve is created by plotting the recall

against the fall-out at various threshold settings.
– The Area Under the Curve (AUC) is the area under

the ROC curve.

III. GENERATION OF HYPOTHETICAL PREDICTED MASK

We would like to show that the decline of metric effective-
ness is not bond to specific classifier. In fact, it is due to the
the limitation of performance metrics themselves as they are
not designed for this scenario. In order to demonstrate how
ubiquitous the problem is, we devise a way to randomly gen-
erate predicted masks based on a given performance metric,
which can yield the bad cases we want at high probability. In
all the following examples, it is assumed that the ground truth
mask is already known. To show the different visual perception
effects of distinctive shapes in masks, we apply the evaluation
on several different predefined pixel level masks, which are
the illustrated in Figure 2. There corresponding patch level
masks can be acquired easily and therefore are not attached.

small
circle

medium
circle

small
ring

medium
ring

small
rectangle

Fig. 2. Pixel level masks used in demonstrations

For the subsequent discussion, the ground truth mask will
be denoted by g, where the value on ith row, jth column is
given by

g(i, j) =

{
0, if the patch is genuine
1, if the patch is tampered.

(1)

In our illustrations, g(i, j) = 0 is shown by white patches,
while g(i, j) = 1 is shown by black patches.

The hypothetical predicted mask will be denoted by h,
which can take on both binary values or real values on [0, 1]
depending on the context. It can be clearly seen that h has the
same dimensionality as g.

A. Generate h given accuracy
It is relatively simple to generate a hypothetical predicted

mask h given an accuracy value a. In the scenario, h only
needs to take on binary values.
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To generate h, we can sample from a Bernoulli distribution
B(p, q), where p = a and q = 1 − a. The algorithm can be
seen as Algorithm 1.

Algorithm 1: Generate h given accuracy a

def get_h_given_acc(g, a):
p = a, q = 1− a
foreach possible (i, j) pair do

sample a value v from B(p, q)
if v = 1 then

h(i, j) = g(i, j)
else

// equivalent to flipping the binary
bit

h(i, j) = 1− g(i, j)
end

end
return h

It is easy to see why h will have accuracy a approximately,
because the event of h(i, j) being assigned with a correct value
has a probability of p = a.

B. Generate h given AUC

Because the AUC implies a huge degree of freedom, given
an AUC value u, it is difficult to enumerate all possible
ROC curves, which may lead to different visual effects. As
our purpose is to create an illustration that loosely represents
the given AUC value, we would like to make the following
assumptions to make the problem more tractable:

1) When the AUC is high, the shapes of ROC curves tend
to look alike and therefore can be approximated by a
family of curves.

2) Suppose an ROC curve is uniformly discretized into a set
of points P = {p1, p2, . . . , pn}, where P is well-sorted
by their spatial occurrence from the top right corner to
the bottom left corner. We assume that the threshold
values are also uniformed distributed (by the length of
the ROC curve) from 0 to 1 on these n points.

The family of curves that is chosen for ROC curve approxi-
mation is a simple 3-line-segment scheme. The equation of the
first line segment is given by l1 : y = kx, where k ≥ 1 is the
gradient. Because the ROC curve is constrained in a square
box, it can be seen that l1 intersects with the (0, 1) → (1, 0)
diagonal at p( 1

k+1 ,
k

k+1 ). We would like to scale the line
segment between the origin and p by a factor of 1− 1

2k . The
second line segment is the symmetry of the first line segment
about the same diagonal, and the third line segment connects
the previous two line segments. It can be expressed as the
piecewise function below:

f(x) =





kx, 0 ≤ x <
k− 1

2
k(k+1)

kx(k+1)+
k(2k−1)

2
−k+ 1

2
k(k+1)

,
k− 1

2
k(k+1)

≤ x < 3
2(k+1)

k+x−1
k

, 3
2(k+1)

≤ x ≤ 1.

(2)

Because the shape of the curve are completely determined
by the choice of k, for simplicity, we shall call it a k-ROC
curve. Different k-ROC curves and their corresponding AUC
values are shown in Figure 3.

When k → +∞, because limk→+∞ 1 − 1
2k = 1, p and its

symmetry will both be close to (0, 1). Therefore, it is easy to
see that when k → +∞, u→ 1.

The relationship between k and u is given by

u =
8k3 − k + 1

8k2 (k + 1)
. (3)

Because it is nontrivial to solve for k given u, a k − u table
is attached to help one select a nearest k value given u, as
shown in Table I.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u = 0.6562

k = 2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u = 0.7953

k = 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u = 0.8874

k = 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u = 0.9407

k = 16

Fig. 3. The ROC curves and AUCs given different k values

k u k u k u
1.0 0.5000 7.0 0.8731 16 0.9407
1.5 0.5889 7.5 0.8807 17 0.9441
2.0 0.6562 8.0 0.8874 18 0.9470
2.5 0.7057 8.5 0.8934 19 0.9497
3.0 0.7431 9.0 0.8988 20 0.9521
3.5 0.7721 9.5 0.9036 30 0.9676
4.0 0.7953 10.0 0.9081 40 0.9755
4.5 0.8143 11 0.9158 50 0.9803
5.0 0.8300 12 0.9223 80 0.9876
5.5 0.8433 13 0.9279 120 0.9917
6.0 0.8547 14 0.9328 160 0.9938
6.5 0.8645 15 0.9370 200 0.9950

TABLE I
THE k − u TABLE

We also need to parameterize the k-ROC curve into t ∈
[0, 1] by its length, where t = 0 indicates the bottom left corner
and t = 1 indicates the top right corner. More specifically,
we need to determine a function rpos(k, t) that returns the
Cartesian coordinate of the parameter t on the curve. Since
k ≥ 1, it is easy to compute that the length of the first line
segment, denoted by rlen1(k), is

rlen1(k) =
(2k − 1)

√
k2 + 1

2k(k + 1)
. (4)
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The length of the second line segment equals to the first, and
the length of the third line segment, denoted by rlen3(k), is

rlen3(k) =

√
2

2k
. (5)

Denote the total length of a k-ROC curve by rlen(k), it can
be seen that

rlen(k) = 2 · rlen1(k) + rlen3. (6)

By interpolating the segments linearly, we can see that the
relationship between the x component of Cartesian coordinate
and t is as follows:
If 0 ≤ t < rlen1(k)

rlen(k) , then

x =

[
t

/
rlen1(k)

rlen(k)

]
· k − 1

2

k (k + 1)
. (7)

If rlen1(k)
rlen(k) ≤ t <

rlen1(k)+rlen3(k)
rlen(k) , then

x =
k − 1

2

k (k + 1)
+

[(
t− rlen1(k)

rlen(k)

)/
rlen3(k)

rlen(k)

]
·

[
3

2 (k + 1)
− k − 1

2

k (k + 1)

]
. (8)

If rlen1(k)+rlen3(k)
rlen(k) ≤ t ≤ 1, then

x =
3

2 (k + 1)
+

[(
t− rlen1(k) + rlen3(k)

rlen(k)

)/
rlen1(k)

rlen(k)

]
·

[
1− 3

2 (k + 1)

]
. (9)

It can be seen that rpos(k, t) = (x, f(x)).
Now we can generate h given k and n with Algorithm 2.
Algorithm 2 can indeed generate h that has a k-ROC curve,

because as the fpr and tpr changes between two points of
the k-ROC curve, the algorithm assigns patches with certain
values so that the fpr and tpr of h will change in the same
way. Once the ROC curve of h follows the k-ROC curve, h
will also have the AUC value defined by the k-ROC curve.

IV. VISUAL OBSERVATIONS

A. Observation 1: big gap in metrics may lead to similar
performance in practice

Figure 4 shows the hypothetical output maps given partic-
ular accuracy scores. Figure 5 shows the hypothetical output
maps given particular k values, where each value of k cor-
responds to an AUC score. It can be seen that objects are
observable in some output maps with lower metric scores.

Algorithm 2: Generate h given k and n

def get_h_given_AUC(g, k, n):
// assume that n > 1
thrs = array of n evenly spaced numbers over [0, 1]
pos = indices of all positive samples in g
neg = indices of all negative samples in g
randomly shuffle p and n
for i = 0 to n− 2 do

fpri, tpri = rpos(k, 1− thrs[i])
fpri, tpri+1 = rpos(k, 1− thrs[i+ 1])
// the following values are computed

according to the fpr/tpr values above
tpi, fpi = number of true positive/false positive samples

at thr[i]
tpi+1, fpi+1 = number of true positive/false positive

samples at thr[i+ 1]
thr = (thrs[i] + thrs[i+ 1])/2 // threshold now
for j = 1 to tpi+1 − tpi do

ind = the first item popped from pos
h(ind) = thr

end
for j = 1 to fpi+1 − fpi do

ind = the first item popped from neg
h(ind) = thr

end
end
return h

accuracy
0.70 0.75 0.80 0.85 0.90 0.95

Fig. 4. Predicted mask given different accuracies

k
2.50 3.00 4.50 6.00 9.00 20.00

Fig. 5. Predicted mask given different k values. The conversion between k
and AUC score is given in Table I.
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B. Observation 2: methods with lower metrics may work
better

It is pointed out by Zhou, Han, Morariu, et al. [27] that
the edges of the tampered region are easier to detect because
the statistical patterns change greatly there. What if there
is a classifier that is very sensitive to the edges of the
tampered region but not the inner? For example, assume that
the tampered region is given by medium circle in Figure 2.
The output of classifier A is shown in Figure 6, and the output
of classifier B is shown in Figure 7. If we compute the AUC of
classifier B, the value is only around 0.62, which is lower than
the output of classifier A, which has an AUC of approximately
0.70. However, the shape of tampered region is much clearer
in the output of classifier B.

Fig. 6. Output of classifier A (second row, first column of Figure 5)

Fig. 7. Output of classifier B (fourth row, sixth column of Figure 5)

V. BETTER PERFORMANCE METRICS

1) Metric to tackle observation 1: We make the assumption
that it is easier for humans to find the correct tampered region
in an output mask because the same pattern is less likely to
appear elsewhere. Therefore, we can use a statistical test to
evaluate how likely it is for the pattern of the tampered region
to appear elsewhere in the output mask.

The statistical test that we choose is the one-sample t-test,
which is given by

T =
x̄− µ
s/
√
N
, (10)

where x̄ is the sample mean, s is the sample standard devia-
tion, N is sample size and µ is the mean that we would like
to test against. We select this test because when N is large, T
will have an approximate standard normal distribution. Hence,

even if N is different, the value of T will correspond to the
magnitude of tail probability.

The test procedure is given as Algorithm 3. It is worth
noticing that in the algorithm, we need to select K distinct
regions. We assume that this can always be satisfied.

Algorithm 3: Statistical test for observation 1
def stat_test(g, h, K):

Input: K: number of repetitions of the test
µ =mean of the tampered region in g
randomly select K distinct regions of the same shape of the

tampered region on h that are non-overlapping with the
original tampered region and store them in r
res = []
foreach region in r do

compute the mean of the region
compute the absolute value of the test statistic and store it

in res
end
return the average value of res

With K = 100, we run Algorithm 3 on outputs in Figure
2. The results are given in Figure 8.




7.14 8.70 11.27 14.50 17.37 23.35
19.36 25.18 35.64 41.77 50.91 65.82
5.36 5.73 9.08 10.54 13.37 16.53
10.34 12.21 16.52 20.17 25.12 33.93
6.89 8.40 12.68 14.80 18.15 23.96




Fig. 8. Metric value computed for Figure 2

VI. CONCLUSION

So far, we have shown how to generate hypothetical output
maps that possess a given accuracy and AUC score. From the
output maps, we observe two major inconsistencies, namely:

1) big gap in metrics may lead to similar performance in
practice

2) methods with lower metrics may work better
Then, we discuss how to design a metric that is not affected
by the first discrepancy.

This project is still ongoing. We would like to achieve the
following:
• Demonstrate the inconsistency for F-measure
• Design a metric that counters Observation 2
• Conduct human experiments to verify the validity of the

metrics
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Analyzing Robust Features From MNIST
website: https://github.com/xziyue/robust_mnist_feature_py

TODOs:

Implement robust training

Implement a sufficient amount of perturbation

Compare performance of std model and robust model

Implement gradient descent for reconstructing features

Current Problems

Convergence: the robust model does not seem to converge well (may need to pretrain the
model first)

Why does horizontal lines hurt accuracy more significantly than vertical lines?

Goals

Is it possible to synthesize "robust" features directly?

Is it possible to differentiate nonrobust and robust features blindly?

Is is possible to create perturbation that leads to human-readable robust features?

The dataset

The MNIST datset is available at http://yann.lecun.com/exdb/mnist/.

If you would like to run this script on your computer, go to /dataset  folder and uncompress all
the dataset files to that folder.

Test results

The perturbated image samples can be seen in figure below. The last column is ground truth. The
group IDs correspond to the order of images in the figure.

CONFID
ENTIAL

For evaluation purposes only. Please do not distribute this document.



Group Id Std Accuracy Robust Accuracy

1 0.829 0.968

2 0.549 0.967

3 0.808 0.969

4 0.727 0.950

5 0.977 0.972

Reconstruction
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Original Reconstruction (Robust) Reconstruction (Nonrobust)
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Original Reconstruction (Robust) Reconstruction (Nonrobust)

File description:

perturbation.py : creates and manages perturbations
load_mnist.py : loading data from MNIST idx format (need to correct endianess if the data
format has sizes greater than 1 byte)
train_std_model.py : trains standard model
train_pretrained_model : trains a pretrain model as initial weights for robust model
train_robust_model.py : trains the robust model
test_std_model : tests the performance of std model on adversarial dataset
test_robust_model : tests the performance of robust model on adversarial dataset

References

Ilyas, Andrew, et al. "Adversarial examples are not bugs, they are features." arXiv preprint
arXiv:1905.02175 (2019).
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