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Preface

It was not until summer of 2021 that I started to attend lectures in person fre-
quently. The long absence of classroom experience and my shaky foundations
in linear algebra both contributed to the unusually strong interest in the course.
Therefore, I decided to devote a serious amount of my time in compiling the
notes for MA511 (Linear Algebra with Applications) at Purdue University. I
wish the notes to be of high quality that it would be easy to understand when-
ever I need to come back for some forgotten knowledge about linear algebra.
However, I did not have enough time to prove all the theorems listed in the
note, especially towards the final topics of the lecture.

I was really fortunate to have prof. Rongqing Ye teaching this course. He
adapted the materials aptly for students of diverse backgrounds. He was one of
the best instructors I have ever seen at presenting lectures using new technolo-
gies for both on-campus and remote students. He had tremendous passion in
teaching and patience for students. I wish he could continue his career in the
academia, for he must be able to influence many students for years to come.

As the Delta strain emerges, it is unclear when the pandemic will be over.
Purdue may cancel residential classes again in the next semester. The inability
to show up in a classroom somehow reduces my efficiency to study. However,
health is the number one priority, and both us and the Purdue University are
making sacrifices to get through this together.

Pray for all the innocent souls that suffered in this tragic event.

Alan Xiang
July 31, 2021
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Section 1: The Basics

1 The Basics

• A solution set of a linear system is the set of all solutions (expressed using set
notation: {𝑠1, 𝑠2, …}).

• A linear system is consistent if it has at least 1 solution.
• A linear system is inconsistent if it has no solution.
• A linear system is singular if it has no solution or infinitely many solutions.
• The number of solutions to a linear system: a linear system can only have no
solution, one solution or infinitely many solutions.

no sol.

1 sol. inf. sol.

singular

consistent

• Identity matrix of order 𝑛, denoted by 𝐈𝑛, is an 𝑛 × 𝑛 matrix with 1’s on the
diagonal and 0’s elsewhere.

• Elementary row operations:
– Replacement: add to one row the multiple of another: 𝑅𝑖 𝑅𝑖 + 𝑐𝑅𝑗.

Corresponding matrix: setting the 𝑖, 𝑗 entry to 𝑐 in 𝐈 (𝑗 < 𝑖).
– Interchange: interchange two rows: 𝑅𝑖 𝑅𝑗.

Corresponding matrix: swapping 𝑖-th and 𝑗-th column in 𝐈.
– Scaling: scale one row by a nonzero scalar: 𝑅𝑖 𝑐𝑅𝑖, 𝑐 ≠ 0.

Corresponding matrix: setting the 𝑖, 𝑖 entry to 𝑐 in 𝐈.
• Augmented matrix: a matrix where the coefficient matrix and biases is juxta-
posed together. For linear system 𝐀𝐱 = 𝐛, the augmented matrix is

􏿮 𝐀 𝐛 􏿱 . (1.1)

• Gaussian elimination: using row operations to transform thematrix into upper
triangular form.
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Example.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
1 2 2 11
2 3 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.2)

𝑅2 𝑅2 − 𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 1 5
2 3 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.3)

𝑅3 𝑅3 − 2𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 1 5
0 1 −6 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.4)

𝑅3 𝑅3 − 2𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 1 5
0 1 −6 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.5)

𝑅3 𝑅2 − 𝑅3
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 6
0 1 1 5
0 0 7 14

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.6)

• Pivot positions: the first nonzero entries in each row of an upper triangular
system.

• Pivots: The nonzero numbers at pivot positions of an upper triangular system.
• Theorem 1.1 (Number of Solutions to a Linear System)

– A linear system is consistent iff. the last column of its augmented matrix
does not have a pivot position.

– If a Linear system is consistent:
∗ It has exactly one solution if all columns in its coefficient matrix have
pivot positions.

∗ It has infinitely many solutions if some columns in its coefficient matrix
have no pivot position.

Remark.

For the linear system 𝐀𝐱 = 𝐛:
∗ If each row of 𝐀 has a pivot position, then 𝐀𝐱 = 𝐛 is consistent for all 𝐛.
∗ If each column of 𝐀 has a pivot position, then 𝐀𝐱 = 𝐛 has at most 1
solution.

• Matrix multiplication

– Matrix-vector multiplication: let matrix 𝐀 = [𝐀1, 𝐀2, … ,𝐀𝑙] ∈ ℝ𝑚×𝑙,
where 𝐀𝑖 is the 𝑖-th column of 𝐀. Let vector 𝐯 = [𝑣1, 𝑣2, … , 𝑣𝑙] ∈ ℝ𝑙.Then
the matrix-vector multiplication 𝐀𝐯 is given by

𝐀𝐯 = 𝑣1𝐀1 + 𝑣2𝐀2 +⋯+ 𝑣𝑙𝐀𝑙. (1.7)
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– Matrix-matrixmultiplication: letmatrix𝐀 ∈ ℝ𝑚×𝑙, letmatrix𝐁 = [𝐁1, 𝐁2, … , 𝐁𝑝] ∈
ℝ𝑙×𝑝. Then the matrix-matrix multiplication 𝐀𝐁 is given by

𝐀𝐁 = [𝐀𝐁1, 𝐀𝐁2, … ,𝐀𝐁𝑝] ∈ ℝ𝑚×𝑝. (1.8)

– Remark.

∗ The 𝑎𝑖𝑗 entry of𝐀𝐁 is the inner product of 𝑖-th row of𝐀 and 𝑗-th column
of 𝐁.

∗ The 𝑗-th column of 𝐀𝐁 is the product of 𝐀 and 𝑗-th column of 𝐁. Each
column of 𝐀𝐁 is a linear combination of columns in 𝐀.

∗ The 𝑖-th row of 𝐀𝐁 is the product of 𝑖-th row of 𝐀 and 𝐁. Each row of
𝐀𝐁 is a linear combination of rows in 𝐁.

– Properties
∗ (Associativity) (𝐀𝐁)𝐂 = 𝐀(𝐁𝐂) = 𝐀𝐁𝐂
∗ (Distributivity) 𝐀(𝐁 + 𝐂) = 𝐀𝐁 + 𝐀𝐂, (𝐁 + 𝐂)𝐃 = 𝐁𝐃 + 𝐂𝐃
∗ In general, 𝐀𝐁 ≠ 𝐁𝐀
∗ In general, cancellation law does not work. That is, 𝐀𝐁 = 𝐀𝐂 ⇏ 𝐁 = 𝐂.
∗ If 𝐀𝐁 = 𝟎, we cannot conclude 𝐀 = 𝟎 or 𝐁 = 𝟎.

• Triangular factorization

– Anymatrix𝐀 can be written as 𝐏𝐀 = 𝐋𝐔, where 𝐏 is a permutationmatrix,
𝐋 is a lower triangular matrix, and 𝐔 is an upper triangular matrix. This
factorization can be acquired from the Gaussian elimination process.

Example.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 1
2 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.9)

𝑅1 𝑅2
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
2 3 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.10)

𝑅3 𝑅3 − 2𝑅1 − 3𝑅2
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.11)
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Therefore, the 𝐏, 𝐋, 𝐔 matrices are given by

𝐏 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐋 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
2 3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.12)

Notice how the coefficients of 𝐋 can be acquired directly from the Gaus-
sian elimination process. Notice that this is only possible when each row is
replaced by the rows above it.

– This factorization can also be written as 𝐏𝐀 = 𝐋𝐃𝐕, where𝐃𝐕 = 𝐔. 𝐃 is
a diagonal matrix whose diagonal values are taken from 𝐔’s. 𝐕 is an upper
triangular matrix with each pivot standardized to 1.

– If 𝐀 is invertible, then 𝐋𝐃𝐕 is uniquely determined by 𝐀.
– For linear system𝐀𝐱 = 𝐛, we know that it is equivalent to 𝐋𝐔𝐱 = 𝐛. There-

fore, we can first solve 𝐋𝐜 = 𝐛 and then solve 𝐔𝐱 = 𝐜.

• Inverse

– The inverse of 𝐀, denoted by 𝐀−1, is a matrix such that 𝐀𝐀−1 = 𝐈.
– If 𝐀 is invertible, then 𝐀−1 is unique.
– If 𝐀 is invertible, then 𝐀𝐱 = 𝐛 has a solution 𝐱 = 𝐀−1𝐛.
– If 𝐀𝐱 = 𝟎 has a nonzero solution, then it is not invertible.
– Properties

∗ (𝐀𝐁)−1 = 𝐁−1𝐀−1

∗ (𝐀−1)−1 = 𝐀
∗ In general, (𝐀 + 𝐁)−1 ≠ 𝐀−1 + 𝐁−1

– The inverse of a matrix can be found with the Gaussian-Jordan method.

Example.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 1 0 0
−1 2 −1 0 1 0
0 −1 2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.13)
𝑅2 𝑅2 +

1
2𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 1 0 0
0 3

2 −1 1
2 1 0

0 −1 2 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.14)

𝑅3 𝑅3 +
2
3𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 1 0 0
0 3

2 −1 1
2 1 0

0 0 4
3

1
3

2
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.15)
𝑅2 𝑅2 +

3
4𝑅3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 1 0 0
0 3

2 0 3
4

3
2

3
4

0 0 4
3

1
3

2
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.16)

𝑅1 𝑅1 +
2
3𝑅2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 3
2 1 1

2
0 3

2 0 3
4

3
2

3
4

0 0 4
3

1
3

2
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.17)

divide by pivot
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 3
4

1
2

1
4

0 1 0 1
2 1 1

2
0 0 1 1

4
1
2

3
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.18)

• Transpose

– The transpose of 𝐀, denoted by 𝐀𝑇 , is a matrix such that (𝐀𝑇)𝑖𝑗 = (𝐀)𝑗𝑖.
– Properties

∗ (𝐀𝐁)𝑇 = 𝐁𝑇𝐀𝑇

∗ (𝐀𝑇)𝑇 = 𝐀
∗ (𝐀𝑇)−1 = (𝐀−1)𝑇

∗ (𝐀 + 𝐁)𝑇 = 𝐀𝑇 + 𝐁𝑇

• Symmetric matrix

– A matrix 𝐀 is symmetric if 𝐀𝑇 = 𝐀.
– Symmetric matrices are square matrices.
– For any matrix 𝐀, 𝐀𝐀𝑇 and 𝐀𝑇𝐀 are symmetric.
– If a symmetric matrix 𝐀 is factorized into 𝐀 = 𝐋𝐃𝐕, then 𝐕 = 𝐋𝑇 .

2 Vector Spaces

• A vector space is an nonempty set 𝑉 of objects called vectors, on which two op-
erations are defined: addition and multiplication by scalars. The set 𝑉 subjects
to the ten axioms below, which must hold true for all vectors 𝐮, 𝐯,𝐰 ∈ 𝑉 and
for all scalars 𝑐, 𝑑 ∈ ℝ:
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1. 𝐮 + 𝐯 ∈ 𝑉
2. 𝐮 + 𝐯 = 𝐯 + 𝐮
3. (𝐮 + 𝐯) + 𝐰 = 𝐮 + (𝐯 + 𝐰)
4. There is a zero vector 𝟎 ∈ 𝑉 such that 𝟎 + 𝐮 = 𝐮
5. For each 𝐮 ∈ 𝑉, there is a vector −𝐮 ∈ 𝑉 such that 𝐮 + (−𝐮) = 𝟎
6. ∀𝑐, 𝑐𝐮 ∈ 𝑉
7. 𝑐(𝐮 + 𝐯) = 𝑐𝐮 + 𝑐𝐯
8. 𝑐(𝑑𝐮) = (𝑐𝑑)𝐮
9. 1𝐮 = 𝐮

• A subspace of a vector space is a nonempty set 𝐻 satisfying:
– ∀𝐱, 𝐲 ∈ 𝐻, 𝐱 + 𝐲 ∈ 𝐻 (closed under addition)
– ∀𝐱 ∈ 𝐻, 𝑐 ∈ ℝ, 𝑐𝐱 ∈ 𝐻 (closed under scalar multiplication)

Remark.

– If we can prove a subspace satisfies the two conditions, it is automatically a
vector space.

– There are two trivial subspaces for any vector space 𝑉: 𝐻 = 𝑉 and𝐻 = {𝟎}.
• Let 𝐯1, 𝐯2, … , 𝐯𝑘 be vectors in 𝑉. The spanning set of 𝐯1, 𝐯2, … , 𝐯𝑘 is the set of
all linear combinations of them. That is,

span{𝐯1, 𝐯2, … , 𝐯𝑘} = {𝑐1𝐯1, 𝑐2𝐯2, … , 𝑐𝑘𝐯𝑘, ∀𝑐𝑖 ∈ ℝ}. (2.1)

• A spanning set is a subspace.
• The column space of 𝐀, denoted by 𝐶(𝐀), is defined to be the spanning set of
its columns.

Remark.

– 𝐀𝐱 = 𝐛 is consistent iff. 𝐛 ∈ 𝐶(𝐀).
• The nullspace of 𝐀, denoted by 𝑁(𝐀), is the solution set of 𝐀𝐱 = 𝟎.
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• A linear system is homogeneous if 𝐛 = 𝟎. It is inhomogeneous if 𝐛 ≠ 𝟎.

Remark.

– The solution set of 𝐀𝐱 = 𝟎 is 𝑁(𝐀).
– A homogeneous system 𝐀𝐱 = 𝟎 is always consistent.

• An upper triangular matrix 𝐔 is an echelon matrix if:
1. The pivots are the first nonzero entries in their rows.
2. Below each pivot are all zeros.
3. Each pivot lies to the right of the pivot in the row above.
It is further called a row reduced echelon matrix (form) (RREF) if it further
satisfies:
1. Each pivot is 1.
2. Each pivot is the only nonzero entry in its column.

• Theorem 2.1 (Transformation to Echelon Matrix)
Any matrix 𝐀 can be transformed into an echelon matrix 𝐔 by a sequence of
elementary row operations.

Remark.

– Such echelon matrix 𝐔 is called an echelon form of 𝐀.
– There are infinitely many echelon forms of a nonzero matrix, but there is

only a unique reduced echelon form.
– Variables on the pivot columns are called pivot variables. Variables on non-

pivot columns are called free variables.
• A set of vectors 𝐯1, 𝐯2, … , 𝐯𝑘 are linearly independent if the linear system 𝑥1𝐯1+
𝑥2𝐯2 +⋯+ 𝑥𝑘𝐯𝑘 = 𝟎 only has the trivial solution 𝐯1 = 𝐯2 = ⋯ = 𝐯𝑘 = 𝟎.

• Theorem 2.2 (Linear Independence)
The following statements are equivalent. That is, they are either all true or all
false.
– The columns of 𝐀 are linearly independent.
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– 𝑁(𝐀) = {𝟎}
– Each column of 𝐀 has a pivot position. If 𝐀 is a square matrix, then also 𝐀

is invertible.
• A basis of a vector space 𝑉 is a set of vectors 𝐵 = {𝐯1, 𝐯2, … , 𝐯𝑘} such that:
1. 𝐵 is linearly independent
2. 𝑉 = span(𝐵)

Remark.

– In general, the columns of 𝐈𝑛 forms the standard basis of ℝ𝑛.
– A basis is a maximum independent set. That is, any linearly independent

set in 𝑉 can be extended to a basis, by adding more vectors if necessary.
– A basis is a minimal spanning set. That is, any spanning set in 𝑉 can be

reduced to a basis, by discarding vectors if necessary.
• Theorem 2.3 (Basis and Invertibility)
If an 𝑛 × 𝑛 matrix 𝐀 is intertible, then its columns form a basis for ℝ𝑛.

• Any two basis of a vector space𝑉 must have the same number of vectors. This
number is called the dimension of 𝑉.

• The four fundamental subspaces
Let 𝐀 be an 𝑚 × 𝑙 matrix. The four fundamental subspaces associated to 𝐀
are:
1. The column space of 𝐀, 𝐶(𝐀), which is the spanning set of the columns of
𝐀. The rank of 𝐀 is dim𝐶(𝐀).

2. The nullspace of 𝐀, 𝑁(𝐀), which is the solution set of 𝐀𝐱 = 𝟎. The nul-
lity of 𝐀 is dim𝑁(𝐀).

3. The row space of 𝐀, which is the column space of 𝐀𝑇 . It is the spanning
set of rows of 𝐀.

4. The left nullspace of 𝐀, which is the nullspace of 𝐀𝑇 . It is the solution set
of 𝐱𝐀 = 𝟎.

• Theorem 2.4 (Finding Basis of Column Space)
The pivot columns of 𝐀 form a basis for 𝐶(𝐀).
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Example.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4
0 1 2 4 6
0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

𝑅2 𝑅2 − 𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4
0 0 0 1 2
0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

𝑅3 𝑅3 − 𝑅2
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 3 4
0 0 0 1 2
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.4)

Therefore, a basis of the column space is
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (2.5)

Notice that the vectors must be taken from the original matrix, instead of the upper
triangular matrix after row operations.

• Theorem 2.5 (Finding Basis of Nullspace)
The vectors associated to the free variables of a parametric form of solutions
to 𝐀𝐱 = 𝟎 form a basis of 𝑁(𝐀).

Example.

First of all, devise the parametric form of solutions, express the pivot vari-
ables in terms of free variables. Then, find the vectors associated with the free
variables.

⎡
⎢⎢⎢⎣
1 2 3
−2 −4 −6

⎤
⎥⎥⎥⎦

(2.6)
𝑅2 𝑅2 + 2𝑅1 ⎡⎢⎢⎢⎣

1 2 3
0 0 0

⎤
⎥⎥⎥⎦

(2.7)

It can be seen that 𝑥1 is a pivot variable; 𝑥2, 𝑥3 are free variables. Therefore,
we have ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2𝑥2 + −3𝑥3
𝑥2
𝑥3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑥2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑥3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

It can be seen that a basis for 𝑁(𝐀) is
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)
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Example.

Now, we have a inhomogeneous system.
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 2 −5
3 1 2 4 −2
1 1 4 0 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.10) 𝑅2 𝑅2 − 3𝑅1
𝑅3 𝑅3 − 𝑅1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 2 −5
0 1 5 −2 13
0 1 5 −2 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

𝑅3 𝑅3 − 𝑅2
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 2 −5
0 1 5 −2 13
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

It can be seen that 𝑥1, 𝑥2 are pivot variables, 𝑥3, 𝑥4 are free variables. Therefore,
we can write

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5 + 𝑥3 − 2𝑥4
13 − 5𝑥3 + 2𝑥4

𝑥3
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5
13
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑥3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−5
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 𝑥4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
2
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.13)

It can be seen that the solution can be written as 𝐱 = 𝐱𝑝+𝐱𝑛, where 𝐱𝑛 ∈ 𝑁(𝐀).
𝐱𝑝 is known as the particular solution.

• Dimensionality, nullity, rank
Suppose 𝐀 ∈ ℝ𝑚×𝑙.
– rank𝐀 = dim𝐶(𝐀) = number of pivot columns
– null𝐀 = dim𝑁(𝐀) = number of non-pivot columns
– rank𝐀 ≤ min(𝑚, 𝑙)
– rank𝐀 + null𝐀 = 𝑙
– rank𝐀 = rank𝐀𝑇

– If 𝐀 is square (𝑚 = 𝑙), then rank𝐀 = 𝑚 ⇔ 𝐀 is invertible

Remark.
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– In general, null𝐀 ≠ null𝐀𝑇 . The equality holds only when 𝐀 is a square
matrix.

• Theorem 2.6 (Finding Basis of Row space)
The elementary row operations do not alter the row space.Therefore, the
nonzero rows of an echelon form can serve as a basis for the row space.

Example.

⎡
⎢⎢⎢⎣
1 2 3
−2 −4 −4

⎤
⎥⎥⎥⎦

(2.14)
𝑅2 𝑅2 + 2𝑅1 ⎡⎢⎢⎢⎣

1 2 3
0 0 2

⎤
⎥⎥⎥⎦

(2.15)

Therefore, a basis for the row space is
􏿺􏿮1 2 3􏿱 , 􏿮0 0 2􏿱􏿽 . (2.16)

• The geometry of four fundamental subspaces

– 𝑁(𝐀) is perpendicular to 𝐶(𝐀𝑇)

Proof. Suppose 𝐀𝑇𝐲 = 𝐛 for some 𝐲, that is, 𝐛 ∈ 𝐶(𝐀𝑇); let 𝐯 ∈ 𝑁(𝐀),
that is, 𝐀𝐯 = 𝟎. It can be seen that 𝐛𝑇𝐯 = (𝐀𝑇𝐲)𝑇𝐯 = 𝐲𝑇𝐀𝐯 = 𝟎.

– 𝑁(𝐀𝑇) is perpendicular to 𝐶(𝐀)

Proof. Suppose 𝐀𝐲 = 𝐛 for some 𝐲, that is, 𝐛 ∈ 𝐶(𝐀); let 𝐯 ∈ 𝑁(𝐀𝑇), that
is, 𝐀𝑇𝐯 = 𝟎. It can be seen that 𝐛𝑇𝐯 = (𝐀𝐲)𝑇𝐯 = 𝐲𝑇𝐀𝑇𝐯 = 𝟎.

• A transformation 𝑇 fromℝ𝑙 toℝ𝑚 is a rule that assigns to each 𝐱 ∈ ℝ𝑙 a vector
𝑇(𝐱) ∈ ℝ𝑚.

Remark. Let 𝐀 ∈ ℝ𝑚×𝑙. Then 𝑇(𝐱) = 𝐀𝐱 is a transformation.
• A transformation 𝑇 ∶ ℝ𝑙 → ℝ𝑚 is linear if:
1. 𝑇(𝐱 + 𝐲) = 𝑇(𝐱) + 𝑇(𝐲)
2. 𝑇(𝑐𝐱) = 𝑐𝑇(𝐱)

Remark. Matrix transformations are linear.
• The standard basis for ℝ𝑙 is {𝐞1, 𝐞2, … , 𝐞𝑙}, which are columns of 𝐈𝑙. If 𝐱 =
(𝑥1, 𝑥2, … , 𝑥𝑙), then 𝐱 = 𝑥1𝐞1 + 𝑥2𝐞2 +⋯+ 𝑥𝑘𝐞𝑘
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• Theorem 2.7 (Linear Transformation Matrix)
Let 𝑇 ∶ ℝ𝑙 → ℝ𝑚 be a linear transformation. Then there is a matrix 𝐀, called
the standard matrix of 𝑇, such that 𝑇(𝐱) = 𝐀𝐱. Moreover,

𝐀 = 􏿮𝑇(𝐞1) 𝑇(𝐞2) ⋯ 𝑇(𝐞𝑙)􏿱 . (2.17)

Example. Suppose 𝑇 ∶ ℝ2 → ℝ3 is a linear transformation given by

𝑇
⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑇
⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣
3
2

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.18)

Derive the standard matrix 𝐀 of 𝑇.
Because 𝑇 is a linear transformation, we can write 𝑇(𝐱) = 𝐀𝐱. Therefore, we
have

𝐀
⎡
⎢⎢⎢⎣
2 1
3 2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.19)

It can be seen that

𝐀 = 𝐀𝐈 = 𝐀
⎡
⎢⎢⎢⎣
2 1
3 2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
2 1
3 2

⎤
⎥⎥⎥⎦
−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
2 1
3 2

⎤
⎥⎥⎥⎦
−1

. (2.20)

• Theorem 2.8 (Composition of Linear Transformations)
Suppose 𝑇 ∶ ℝ𝑙 → ℝ𝑝 is linear with standard matrix 𝐀, and 𝐺 ∶ ℝ𝑝 → ℝ𝑚 is

linear with standard matrix 𝐁. Then the standard matrix for 𝐺 ∘ 𝑇 ∶ ℝ𝑙 𝑇−−−→
ℝ𝑝 𝐺−−−→ ℝ𝑚 is 𝐁𝐀.

• Let 𝐵 = {𝐛1, 𝐛2, … , 𝐛𝑛} be a basis for a vector space 𝑉. Then any vector 𝐯 in 𝑉
can be uniquely written as 𝐯 = 𝑥1𝐛1+𝑥2𝐛2+⋯+𝑥𝑛𝐛𝑛. [𝐯]𝐵 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇
is called the 𝐵-coordinate of 𝐯.

Example. Letℙ2 = {all polynomials of degree ≤ 2}. Let 𝐿 = {𝑡+1, 𝑡−1, 𝑡2−1}.
Prove that 𝐿 is a basis for ℙ2. Derive the 𝐿-coordinate for 1 + 2𝑡 + 3𝑡2.
A polynomial in ℙ2 can be written as 𝑐 + 𝑏𝑡 + 𝑎𝑡2. Its coordinate under the
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standard basis is [𝑐, 𝑏, 𝑎]𝑇 . Putting the three coordinate vectors of 𝐿 in one
matrix, we have
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.21)

𝑅2 𝑅2 − 𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
0 2 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.22)

Because there are three pivots, we know that the vectors in 𝐿 are linearly in-
dependent. Because the dimension of ℙ2 is 3, we know that 𝐿 is a basis of ℙ2.
Denote the 𝐿-coordinate of 1 + 2𝑡 + 3𝑡2 by 𝐱. We know that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐱 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.23)

Therefore, we have

𝐱 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
−1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.24)

Example. Let ℙ2 = {all polynomials of degree ≤ 2}. Let 𝑊 = {𝑝 ∈ ℙ2 ∶
𝑝(1) = 𝑝′(1) = 0}. Show that𝑊 is a subspace of ℙ2 and find a basis for𝑊.
Suppose 𝑝1, 𝑝2 ∈ 𝑊. It can be seen that (𝑝1 + 𝑝2)(1) = 𝑝1(1) + 𝑝2(1) = 0,
(𝑝1 + 𝑝2)′(1) = 𝑝′1(1) + 𝑝′2(1) = 0 that is, 𝑝1 + 𝑝2 ∈ 𝑊; ∀𝑐 ∈ ℝ, 𝑐𝑝1(1) = 0,
𝑐𝑝′1(1) = 0, that is, 𝑐𝑝1 ∈ 𝑊. As a result,𝑊 is a subspace of ℙ2. A polynomial
in ℙ2 can be written as 𝑐 + 𝑏𝑡 + 𝑎𝑡2. Now, 𝑝(1) = 𝑝′(1) is equivalent to the
condition ⎧⎪⎨

⎪⎩
𝑎 + 𝑏 + 𝑐 = 0
2𝑎 + 𝑏 = 0

. (2.25)

The corresponding matrix of this homogeneous system is
⎡
⎢⎢⎢⎣
1 1 1
2 1 0

⎤
⎥⎥⎥⎦ . (2.26)

Finding a basis of the homogeneous system is essentially finding a basis for the
nullspace of the matrix. Therefore, we have
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⎡
⎢⎢⎢⎣
1 1 1
2 1 0

⎤
⎥⎥⎥⎦

(2.27)
𝑅2 𝑅2 − 2𝑅1 ⎡⎢⎢⎢⎣

1 1 1
0 −1 −2

⎤
⎥⎥⎥⎦

(2.28)
𝑅1 𝑅1 + 𝑅2 ⎡⎢⎢⎢⎣

1 1 1
0 −1 −2

⎤
⎥⎥⎥⎦

(2.29)
𝑅1 𝑅1 + 𝑅2 ⎡⎢⎢⎢⎣

1 0 −1
0 −1 −2

⎤
⎥⎥⎥⎦

(2.30)

There is only one free variable 𝑐. It can be seen that
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐
−2𝑐
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.31)

Therefore, a basis for𝑊 is 1 − 2𝑡 + 𝑡2. (Remember to write the basis in polynomial
form.)

Example. Let 𝑇 ∶ ℙ2 → ℙ2. Defined by 𝑇(𝑝) = 𝑝(0)𝑡 + 𝑝(1)𝑡2. Let 𝐵 be the
standard basis of ℙ2. Find a 𝐵-matrix 𝐀 to represent 𝑇. Let 𝐿 be {𝑡 − 1, 𝑡 +
1, 𝑡2 − 1}. Find an 𝐿-matrix representation of 𝐀.
A polynomial in ℙ2 can be written as 𝑐 + 𝑏𝑡 + 𝑎𝑡2. Therefore, we have 𝑇(𝑝) =
𝑐𝑡 + (𝑎 + 𝑏 + 𝑐)𝑡2. As a result, the 𝐵-matrix of 𝐀 is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.32)

The basis of 𝐿 is given by

𝐂 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.33)

Suppose vector 𝐲 is in 𝐿-coordinate. In order to apply𝐀 to 𝐲 in 𝐿-coordinate,
we need to transform 𝐲 back to 𝐵-coordinate first, apply𝐀, and then transform
the result back to 𝐿-coordinate. Therefore, the corresponding transform ma-
trix is

𝐂−1𝐀𝐂 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1
1 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1
2

0 1 1
2

0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.35)

3 Orthogonality

• An inner product on a vector space 𝑉 is a function that, to each pair of vectors
𝐮 and 𝐯 in 𝑉, associates a real number < 𝐮, 𝐯 > that satisfies:
1. ⟨𝐮, 𝐯⟩ = ⟨𝐯, 𝐮⟩
2. ⟨𝐮 + 𝐯,𝐰⟩ = ⟨𝐮,𝐰⟩ + ⟨𝐯,𝐰⟩
3. ⟨𝑐𝐮, 𝐯⟩ = 𝑐⟨𝐮, 𝐯⟩
4. ⟨𝐮, 𝐮⟩ ≥ 0 and ⟨𝐮, 𝐮⟩ = 0 ⇔ 𝐮 = 𝟎

Remark. Only vector spaces with inner products have geometry.
• Geometry on the inner product space

– The length of 𝐯 ∈ 𝑉 is ‖𝐯‖ = √⟨𝐯, 𝐯⟩
– Let the angle between 𝐯 and 𝐰 be 𝜃, then ⟨𝐯,𝐰⟩ = ‖𝐯‖ ‖𝐰‖ cos𝜃

• Two vectors 𝐯 and 𝐰 are orthogonal if ⟨𝐯,𝐰⟩ = 𝟎.
• Theorem 3.1 (Orthogonality and Linear Independence)
Let 𝐯1, 𝐯2, … , 𝐯𝑘 be mutually orthogonal nonzero vectors, then they are lin-
early independent.

Proof. Apply the dot product of 𝐯𝑖 to both sides of 𝑐1𝐯1+𝑐2𝐯2+… , 𝑐𝑘𝐯𝑘 = 𝟎,
we get 𝑐𝑖𝐯𝑇𝑖 𝐯𝑖 = 0. Because 𝐯𝑖’s are nonzero, it must be that 𝑐𝑖 = 0.

• If the vectors in a basis of𝑉 are mutually orthogonal, it is called an orthogonal
basis. If each vector in the orthogonal matrix has unit length, it is called an
orthonormal basis.

• Let 𝑉 be a vector space with an inner product. Two subspaces 𝐺 and 𝐻 of 𝑉
are orthogonal (written as 𝐺 ⟂ 𝑉) if ∀𝐠 ∈ 𝐺, ∀𝐡 ∈ 𝐻, ⟨𝐠, 𝐡⟩ = 0.

• Theorem 3.2 (Orthogonality of Matrix Subspaces)
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Let 𝐀 ∈ ℝ𝑚×𝑙

– 𝐶(𝐀𝑇) ⟂ 𝑁(𝐀)
– 𝐶(𝐀) ⟂ 𝑁(𝐀𝑇)

• Let 𝑉 be a vector with an inner product. Given a subspace 𝐻 of 𝑉, the space
of all vectors orthogonal to 𝐻 is called orthogonal complement of 𝐻. It is
denoted by 𝐻⟂.

Remark.

– dim𝐻 + dim𝐻⟂ = dim𝑉
– (𝐻⟂)⟂ = 𝐻

Example. Let𝑊 be a subspace inℝ3 defined by 𝑥+ 2𝑦 − 3𝑧 = 0. Find a basis
for𝑊⟂.
Let 𝐀 = 􏿮1 2 3􏿱, then𝑊 = 𝑁(𝐀). 𝑊⟂ = 𝑁(𝐀)⟂ = 𝐶(𝐀𝑇). A basis for the
row space is 􏿮1 2 3􏿱, which is the basis for𝑊⟂.

Example. 𝐀𝐱 = 𝐛 is consistent when 𝐛 ∈ 𝐶(𝐀). That is, 𝐛 ⟂ 𝑁(𝐀𝑇).
• Projection onto a vector: the projection of vector 𝐲 onto a vector 𝐮 is given by

proj𝐮 𝐲 =
⟨𝐮, 𝐲⟩
⟨𝐮, 𝐮⟩𝐮 =

𝐮𝐮𝑇𝐲
𝐮𝑇𝐮 . (3.1)

𝐮

𝐲

proj𝐮 𝐲

• Projection formula: suppose 𝐵 = {𝐮1, 𝐮2, … , 𝐮𝑘} is an orthogonal basis for𝑊.
The orthogonal projection of vector 𝐲 onto𝑊 is given by

proj𝑊 𝐲 = proj𝐮1 𝐲 + proj𝐮2 𝐲 +⋯ + proj𝐮𝑘 𝐲. (3.2)
The standard matrix of the projection operation 𝐏 is given by

𝐏 =
𝐮1𝐮𝑇1
𝐮𝑇1𝐮1

+
𝐮2𝐮𝑇2
𝐮𝑇2𝐮2

+⋯+
𝐮𝑘𝐮𝑇𝑘
𝐮𝑇𝑘 𝐮𝑘

. (3.3)
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Remark. It works only when 𝐵 is an orthogonal basis.
• Theorem 3.3 (Projection, Generic)
Let𝑊 be a subspace ofℝ𝑛 with a basis given by columns of a matrix𝐀. Then
the orthogonal projection matrix onto𝑊 is 𝐀(𝐀𝑇𝐀)−1𝐀𝑇 .

Proof. Suppose 𝐵 = {𝐯1, 𝐯2, … , 𝐯𝑘} is a basis for𝑊. Let 𝐀 = 􏿮𝐯1, 𝐯2, … , 𝐯𝑘􏿱,
we know𝑊 = 𝐶(𝐀). We can write 𝐲 = 𝐲̂ + 𝐳, where 𝐲̂ ∈ 𝐶(𝐀), 𝐳 ∈ 𝐶(𝐀)⟂ =
𝑁(𝐀𝑇). It can be seen that ∃𝐱, 𝐲̂ = 𝐀𝐱; 𝐀𝑇𝐳 = 𝟎. We need to find 𝐱.

𝐲 = 𝐀𝐱 + 𝐳 (3.4)
⇒ 𝐀𝑇𝐲 = 𝐀𝑇𝐀𝐱 + 𝐀𝑇𝐳 (3.5)
⇒ 𝐀𝑇𝐲 = 𝐀𝑇𝐀𝐱 (3.6)
⇒ 𝐱 = (𝐀𝑇𝐀)−1𝐀𝑇𝐲 (3.7)

That is,
𝐲̂ = 𝐀(𝐀𝑇𝐀)−1𝐀𝑇𝐲. (3.8)

Remark. If the columns of𝐀 are linearly independent, then𝐀𝑇𝐀 is invertible.
Proof: 𝐀𝑇𝐀𝐱 = 𝟎 ⇒ 𝐱𝑇𝐀𝑇𝐀𝐱 = 0 ⇒ (𝐀𝐱)𝑇𝐀𝐱 = 0 ⇒ ‖𝐀𝐱‖2 = 0 ⇒ 𝐀𝐱 = 𝟎.
That is to say, the nullspace of 𝐀 and 𝐀𝑇𝐀 are the same.

• The orthogonal complement of 𝐲 onto𝑊, denoted by orth𝑊 𝐲, is given by
orth𝑊 𝐲 = 𝐲 − proj𝑊 𝐲. (3.9)

Remark.

– Proof of orth𝑊 𝐲 ⟂ 𝐖: let 𝐳 = 𝐲−proj𝑊 𝐲 = 𝐲−𝐀(𝐀𝑇𝐀)−1𝐀𝑇𝐲. Multiply
𝐀𝑇 to both sides, we have 𝐀𝑇𝐳 = 𝐀𝑇𝐲 − 𝐀𝑇𝐀(𝐀𝑇𝐀)−1𝐀𝑇𝐲 = 𝟎. That is,
𝐳 ∈ 𝑁(𝐀𝑇) ⇒ 𝐳 ⟂ 𝐶(𝐀) ⇒ 𝐳 ∈ 𝐶(𝐀)⟂.

– The distance between 𝐲 and𝑊 is given by ‖orth𝑊 𝐲‖.
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Example. Let 𝐀 be given by

𝐀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
−1 0 −1
0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

and𝑊 = 𝐶(𝐀). Find the projection of 𝐲 = 􏿮1 2 3􏿱
𝑇
on𝑊. Determine the

distance between 𝐲 and𝑊.

Step 1: find a basis for𝑊

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
−1 0 −1
0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

𝑅2 𝑅2 + 𝑅1
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
0 1 1
0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

𝑅3 𝑅3 + 𝑅2
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
0 1 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.13)

Therefore, a basis for𝑊 is given by

𝐕 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.14)

Step 2: Find the projection matrix

𝐏 = 𝐕(𝐕𝑇𝐕)−1𝐕𝑇 (3.15)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
2 1
1 2

⎤
⎥⎥⎥⎦
−1 ⎡
⎢⎢⎢⎣
1 −1 0
1 0 −1

⎤
⎥⎥⎥⎦ (3.16)

= 1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.17)

Step 3: Compute projection
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𝐲̂ = 𝐏𝐲 = 1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.18)

Step 4: Compute orthogonal complement and distance

orth𝑊 𝑦 = 𝐲 − 𝐲̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.19)

The distance is ‖orth𝑊 𝐲‖ = 2√3.

• Theorem 3.4 (Gram-Schmidt Process)
Given a basis {𝐱1, 𝐱2, … , 𝐱𝑝} for a nonzero subspace𝑊 of ℝ𝑛, define

𝐯1 = 𝐱1 (3.20)
𝐯2 = 𝐱2 − proj𝐯1 𝐱2 (3.21)
𝐯3 = 𝐱3 − proj𝐯1 𝐱3 − proj𝐯2 𝐱3 (3.22)
⋮ (3.23)

𝐯𝑝 = 𝐱𝑝 − proj𝐯1 𝐱𝑝 − proj𝐯2 𝐱𝑝 −⋯ − proj𝐯𝑝−1 𝐱𝑝, (3.24)
then {𝐯1, 𝐯2, … , 𝐯𝑝} is an orthogonal basis for𝑊.

Remark.

– span{𝐯1, 𝐯2, … , 𝐯𝑘} = span{𝐱1, 𝐱2, … , 𝐱𝑘} for 1 ≤ 𝑘 ≤ 𝑝.

– 􏿻 𝐯1
‖𝐯1‖

, 𝐯2
‖𝐯2‖

, , … , 𝐯𝑘
‖𝐯𝑘‖

􏿾 is an orthonormal basis for𝑊.

• If a matrix 𝐐 has orthonormal columns, it is called an orthogonal matrix. It
can be seen that 𝐐𝑇𝐐 = 𝐈, that is, 𝐐−1 = 𝐐𝑇 .

Remark. When 𝐐 is a square matrix, we have 𝐐𝐐𝑇 = 𝐈 as well.
• Theorem 3.5 (QR Factorization)
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Let 𝐀 be an 𝑚 × 𝑙 matrix of rank 𝑙. That is, 𝑙 ≤ 𝑚, and columns of 𝐀 are
linearly independent. Then, there exists an 𝑚× 𝑙matrix𝐐 and an 𝑙 × 𝑙matrix
𝐑 such that 𝐀 = 𝐐𝐑 satisfying:
1. 𝐐 ∈ ℝ𝑚×𝑙 is an orthogonal matrix
2. 𝐑 = 𝐐𝑇𝐀 ∈ ℝ𝑙×𝑙 is an upper triangular matrix with positive diagonal

entries

Remark.

– We can find 𝐐 by applying Gram-Schmidt process to the columns of 𝐀.
– 𝐐 and 𝐑 are unique.

• A least-square solution of 𝐀𝐱 = 𝐛 is 𝐱̂ such that
‖𝐛 − 𝐀𝐱̂‖ ≤ ‖𝐛 − 𝐀𝐱‖ (3.25)

for all 𝐱. The length ‖𝐛 − 𝐀𝐱̂‖ is called the least square error of the approxi-
mation of 𝐀𝐱 = 𝐛.

• Finding a least square solution for 𝐀𝐱 = 𝐛

– Idea: find the projection of 𝐛 in𝐶(𝐀), which is denoted by 𝐛̂. Solve𝐀𝐱 = 𝐛̂
instead.

𝐀𝐱 = 𝐀(𝐀𝑇𝐀)−1𝐀𝑇𝐛 (3.26)
⇒𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐀(𝐀𝑇𝐀)−1𝐀𝑇𝐛 (3.27)
⇒𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐛 (3.28)

– Theorem 3.6 (Normal Equation)
𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐛 is the normal equation of 𝐀𝐱 = 𝐛, which is always consistent.
The solutions to 𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐛 are the least-square solutions to 𝐀𝐱 = 𝐛.

• Theorem 3.7 (Properties of Least Squares)
Let 𝐀 be an 𝑚 × 𝑙 matrix. The following statements are equivalent:
– 𝐀𝐱 = 𝐛 has an unique least-square solution for each 𝐛 ∈ ℝ𝑛.
– The columns of 𝐀 are linearly independent.
– The matrix 𝐀𝑇𝐀 is invertible.
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When these statements are true, the least-square solution 𝐱̂ is given by
𝐱̂ = (𝐀𝑇𝐀)−1𝐀𝑇𝐛. (3.29)

• Least squares and QR factorization: let 𝐀 be an 𝑚 × 𝑙 matrix with linearly
independent columns. 𝐀 has QR factorization 𝐀 = 𝐐𝐑. The least square
solution of 𝐀𝐱 = 𝐛 is given by 𝐱̂ = 𝐑−1𝐐𝑇𝐛.

Remark. In practice, an easier way to get the solution is to solve the upper
triangular system 𝐑𝐱̂ = 𝐐𝑇𝐛.

• Least squares and polynomial approximation

Example. Let 𝑉 = 𝐶[0, 1] and ⟨𝑓, 𝑔⟩ = ∫
1
0
𝑓(𝑡)𝑔(𝑡)𝑑𝑡 be an inner product on

𝑉. Let𝑊 = span{𝑝1, 𝑝2, 𝑝3}, where
𝑝1 = 1 (3.30)
𝑝2 = 2𝑡 − 1 (3.31)
𝑝3 = 12𝑡2. (3.32)

Find an orthogonal basis of𝑊.
It can be seen that:

𝑞1 = 𝑝1 = 1; (3.33)

𝑞2 = 𝑝2 − proj𝑞1 𝑝2 (3.34)

= 𝑝2 −
⟨𝑞1, 𝑝2⟩
⟨𝑞1, 𝑞1⟩

𝑞1 (3.35)

= (2𝑡 − 1) −
∫1
0
2𝑡 − 1𝑑𝑡

∫1
0
1𝑑𝑡

⋅ 1 (3.36)

= 2𝑡 − 1. (3.37)

𝑞3 = 𝑞3 − proj𝑞1 𝑝3 − proj𝑞2 𝑝3 (3.38)

= (12𝑡2) − ⟨𝑞1, 𝑝3⟩⟨𝑞1, 𝑞1⟩
𝑞1 −

⟨𝑞2, 𝑝3⟩
⟨𝑞2, 𝑞2⟩

𝑞2 (3.39)
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= (12𝑡2) −
∫1
0
12𝑡2𝑑𝑡

∫1
0
1𝑑𝑡

⋅ 1 −
∫1
0
(2𝑡 − 1)12𝑡2𝑑𝑡

∫1
0
(2𝑡 − 1)(2𝑡 − 1)𝑑𝑡

⋅ (2𝑡 − 1) (3.40)

= (12𝑡2) − 4 − 6(2𝑡 − 1) = 12𝑡2 − 12𝑡 + 2. (3.41)

Example. Let 𝑉 = ℙ4 with inner product given by evaluation at -2, 1, 0, 1,
2. Let𝑊 = ℙ2 be a subspace of 𝑉. Find 𝑎, 𝑏, 𝑐 such that 𝑎 + 𝑏𝑡 + 𝑐𝑡2 is closest
to 5 − 1

2 𝑡
4.

We can write our problem as

􏿮1 𝑡 𝑡2􏿱􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍
𝐀

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟
𝐱

= 5 − 12𝑡
4

􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝐛

. (3.42)

The normal equation is 𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐛, which is given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨1, 1⟩ ⟨1, 𝑡⟩ ⟨1, 𝑡2⟩
⟨𝑡, 1⟩ ⟨𝑡, 𝑡⟩ ⟨𝑡, 𝑡2⟩
⟨𝑡2, 1⟩ ⟨𝑡2, 𝑡⟩ ⟨𝑡2, 𝑡2⟩

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨1, 5 − 1
2 𝑡
4⟩

⟨𝑡, 5 − 1
2 𝑡
4⟩

⟨𝑡2, 5 − 1
2 𝑡
4⟩

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.43)

where

1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑡 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
−1
0
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝑡2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
1
0
1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 5 − 12𝑡
4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3
9
2
5
9
2
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.44)

After the computation of inner product, we get
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 10
0 10 0
10 0 34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
0
−15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.45)
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It can be seen that a least square solution is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎
𝑏
𝑐

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 10
0 10 0
10 0 34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
0
−15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.46)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17
35 0 −17
0 1

10 0
−17 0 1

14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
0
−15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

211
35
0
−3114

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.47)

Example. Let 𝑉 = 𝐶[0, 1] and ⟨𝑓, 𝑔⟩ = ∫
1
0
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 be an inner product on

𝑉. Find 𝑎 + 𝑏𝑥 that is closest to 𝑥5 in 𝑉.
We can write our problem as

􏿮1 𝑡􏿱􏿅
𝐀

⎡
⎢⎢⎢⎣
𝑎
𝑏

⎤
⎥⎥⎥⎦

⏟
𝐱

= 𝑥5⏟
𝐛

. (3.48)

The normal equation is 𝐀𝑇𝐀𝐱 = 𝐀𝑇𝐛, which is given by
⎡
⎢⎢⎢⎣
⟨1, 1⟩ ⟨1, 𝑥⟩
⟨𝑥, 1⟩ ⟨𝑥, 𝑥⟩

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
𝑎
𝑏

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
⟨1, 𝑥5⟩
⟨𝑡, 𝑥5⟩

⎤
⎥⎥⎥⎦ . (3.49)

That is,
⎡
⎢⎢⎢⎢⎢⎢⎣
∫1
0
𝑑𝑥 ∫1

0
𝑥𝑑𝑥

∫1
0
𝑥𝑑𝑥 ∫1

0
𝑥2𝑑𝑥

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
𝑎
𝑏

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣
∫1
0
𝑥5𝑑𝑥

∫1
0
𝑥6𝑑𝑥

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.50)

⇒
⎡
⎢⎢⎢⎢⎣
1 1

21
2

1
3

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
𝑎
𝑏

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1
61
7

⎤
⎥⎥⎥⎥⎦ . (3.51)

Therefore, we have
⎡
⎢⎢⎢⎣
𝑎
𝑏

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
1 1

21
2

1
3

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣
1
61
7

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
4 −6
−6 12

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1
61
7

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
− 4
215
7

⎤
⎥⎥⎥⎥⎦ . (3.52)

• Complex number
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– A complex number can be written as 𝑧 = 𝑎+𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ, and 𝑖 is the
imaginary number unit.

– Notations: suppose 𝑧 = 𝑎 + 𝑏𝑖
∗ ℜ(𝑧) = 𝑎, the real part
∗ ℑ(𝑧) = 𝑏, the imaginary part
∗ 𝑧̄ = 𝑎 − 𝑏𝑖, the complex conjugate of 𝑧
∗ ℂ: the set of all complex numbers

∗ |𝑧| = √𝑎2 + 𝑏2, the absolute value; |𝑧|2 = 𝑧𝑧̄

∗ arg(𝑧) = arctan 𝑏
𝑎

– Polar form: a complex number can be written as 𝑧 = 𝑎 + 𝑏𝑖 = 𝑟 cos𝜙 +
𝑖𝑟 sin𝜙, where 𝑟 = |𝑧|, 𝜙 = arg(𝑧).

• Given a sequence of numbers 𝑦0, 𝑦1, … , 𝑦𝑛−1. Suppose these numbers are sam-
pled from a function 𝑓(𝑡) at 𝑡 = 0, 1𝑛 ,

2
𝑛 , … ,

𝑛−1
𝑛 . The Fourier transform of 𝑓(𝑡)

is given by
𝐹(𝑡) = 𝑐0 + 𝑐1𝑒2𝜋𝑖⋅𝑡 + 𝑐2𝑒2𝜋𝑖⋅2𝑡 +⋯+ 𝑐𝑛−1𝑒2𝜋𝑖⋅(𝑛−1)𝑡 (3.53)

Remark. Only 𝑛 terms are enough. Consider the 𝑘𝑛 + 𝑙 term, where 𝑘 ≥
1, 0 ≤ 𝑙 < 𝑛. We have

𝑒2𝜋𝑖⋅(𝑘𝑛+𝑙)𝑡 = 𝑒2𝜋𝑖⋅𝑘𝑛𝑡𝑒2𝜋𝑖⋅𝑙𝑡 = 𝑒2𝜋𝑖⋅𝑙𝑡. (3.54)
That is, terms beyond 𝑛 will be equal to the first 𝑛 terms.

– Derivation of Discrete Fourier Transform
In order to acquire the coefficients 𝑐𝑘, consider 𝐹 􏿵

1
𝑛􏿸, which is given by

𝐹 􏿶
1
𝑛􏿹 = 𝑐0 + 𝑐1 𝑒

2𝜋𝑖⋅ 1𝑛􏿅
𝑤

+𝑐2 𝑒
2𝜋𝑖⋅ 2𝑛􏿅
𝑤2

+⋯+ 𝑐𝑛−1 𝑒
2𝜋𝑖⋅ 𝑛−1𝑛􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝑤𝑛−1

. (3.55)
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Putting 𝑡 = 0, 1𝑛 , … ,
𝑛−1
𝑛 into the above equation:

𝑐0 + 𝑐1 + 𝑐2 +⋯+ 𝑐𝑛−1 = 𝑦0
𝑐0 + 𝑤𝑐1 + 𝑤2𝑐2 +⋯+ 𝑤𝑛−1𝑐𝑛−1 = 𝑦1
𝑐0 + 𝑤2𝑐1 + 𝑤4𝑐2 +⋯+ 𝑤2(𝑛−1)𝑐𝑛−1 = 𝑦2

⋮
𝑐0 + 𝑤𝑛−1𝑐1 + 𝑤2(𝑛−1)𝑐2 +⋯+ 𝑤(𝑛−1)2𝑐𝑛−1 = 𝑦𝑛−1,

(3.56)

where 𝑤 = 𝑒
2𝜋𝑖
𝑛 . The system above can be written in matrix form as:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ⋯ 1
1 𝑤 𝑤2 ⋯ 𝑤𝑛−1
1 𝑤2 𝑤4 ⋯ 𝑤2(𝑛−1)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑤𝑛−1 𝑤2(𝑛−1) ⋯ 𝑤(𝑛−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
𝐅

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐0
𝑐1
𝑐2
⋮

𝑐𝑛−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏿋􏻰􏿌􏻰􏿍
𝐜

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦0
𝑦1
𝑦2
⋮

𝑦𝑛−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝐲

. (3.57)

That is, the Fourier coefficients 𝐜 can be found by multiplying the inverse
of Fourier matrix 𝐅 and the function values 𝐲 (𝐜 = 𝐅−1𝐲).

– Theorem 3.8 (Properties of the Fourier Matrix)

Let𝑤 = 𝑒
2𝜋𝑖
𝑛 and 𝐅 be the 𝑛×𝑛 Fourier matrix. Then 𝑤̄ = 𝑤−1 and 𝐅𝐅̄ = 𝑛𝐈.

That is,

𝐅−1 = 1
𝑛𝐅̄ =

1
𝑛

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ⋯ 1
1 𝑤−1 𝑤−2 ⋯ 𝑤−(𝑛−1)
1 𝑤−2 𝑤−4 ⋯ 𝑤−2(𝑛−1)
⋮ ⋮ ⋮ ⋱ ⋮
1 𝑤−(𝑛−1) 𝑤−2(𝑛−1) ⋯ 𝑤−(𝑛−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.58)

Proof. It can be shown that for complex number 𝑧, 𝑧−1 = 𝑧̂
|𝑧| . Because

|𝑤| = 1, we know 𝑤̄ = 𝑤−1. Here are some facts:

∗ 𝑤𝑛 = 1: 𝑤𝑛 = 􏿶𝑒
2𝜋𝑖
𝑛 􏿹

𝑛
= 𝑒2𝜋𝑖 = 1.
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∗ For any non-negative integer 𝑗, 𝑤𝑛𝑗 = 1.
∗ Let 𝐴𝑤 = 1 + 𝑤𝑗 +𝑤2𝑗 +⋯+𝑤(𝑛−1)𝑗, then 𝐴𝑤 = 𝑛 if 𝑗 = 0; 𝐴𝑤 = 0 if 𝑗 is
an positive integer.
It is clear that 𝐴𝑤 = 𝑛 when 𝑗 = 0. When 𝑗 > 0, 𝐴𝑤 is the sum of
a geometric series with common ratio 𝑤𝑗. Therefore, we have 𝐴𝑤 =
1−(𝑤𝑗)𝑛

1−𝑤𝑗
= 0.

Since 𝐅 is a symmetricmatrix, its rows and columns are the same. Therefore,
the 𝑘-th row of 𝐅 is given by

􏿮1 𝑤𝑘 𝑤2𝑘 ⋯ 𝑤(𝑛−1)𝑘􏿱 . (3.59)
The 𝑙-th column of 𝐅̄ is given by

􏿮1 𝑤−𝑙 𝑤−2𝑙 ⋯ 𝑤−(𝑛−1)𝑙􏿱
𝑇
. (3.60)

Therefore, the (𝑘, 𝑙) element of 𝐅𝐅̄ is
1 + 𝑤𝑘𝑤−𝑙 + 𝑤2𝑘𝑤−2𝑙 +⋯+ 𝑤(𝑛−1)𝑘𝑤−(𝑛−1)𝑙 (3.61)
= 1 + 𝑤(𝑘−𝑙) + 𝑤2(𝑘−𝑙) +⋯+ 𝑤(𝑛−1)(𝑘−𝑙) (3.62)

=
⎧⎪⎨
⎪⎩
𝑛, 𝑘 = 𝑙
0, 𝑘 ≠ 𝑙

. (3.63)

It can be seen that 𝐅𝐅̄ = 𝑛𝐈.

• Fast Fourier Transform (FFT)

Assume the Fourier matrix is of 𝑛×𝑛, where 𝑛 = 2𝑚. Let𝑤𝑛 = 𝑒
2𝜋𝑖
𝑛 , 𝐅 = [𝑤𝑗𝑘𝑛 ],

𝐜 = (𝑐0, 𝑐1, … , 𝑐𝑛−1). It can be seen that 𝑤2𝑘𝑗𝑛 = 􏿶𝑒
2𝜋𝑘𝑗
2𝑚 􏿹

2
= 𝑒

2𝜋𝑘𝑗
𝑚 = 𝑤𝑘𝑗𝑚. Our

goal is to compute 𝐲 = 𝐅𝐜 efficiently. Consider the 𝑗-th component of 𝐲:

𝐲𝑗 = 𝑐0 + 𝑤
𝑗
𝑛𝑐1 +⋯+ 𝑤𝑗(𝑛−1)𝑛 𝑐𝑛−1 (3.64)

=
𝑛−1
􏾜
𝑘=0

𝑤𝑗𝑘𝑛 𝑐𝑘 =
𝑚−1
􏾜
𝑘=0

𝑤2𝑘𝑗𝑛 𝑐2𝑘 +
𝑚−1
􏾜
𝑘=0

𝑤(2𝑘+1)𝑗𝑛 𝑐2𝑘+1 (3.65)
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=
𝑚−1
􏾜
𝑘=0

𝑤𝑘𝑗𝑚𝑐2𝑘
􏿋􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏿍

𝐲′𝑗

+𝑤𝑗𝑛
𝑚−1
􏾜
𝑘=0

𝑤𝑘𝑗𝑚𝑐2𝑘+1
􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏿍

𝐲″𝑗

(3.66)

One can see that 𝐲′𝑗 comes from the smaller sub-problem. Therefore, we can
derive an efficient algorithm as follows:
Step 1: Separate 𝐜 into even and odd numbered components:

𝐜′ = (𝑐0, 𝑐2, … , 𝑐𝑛−2) (3.67)
𝐜″ = (𝑐1, 𝑐3, … , 𝑐𝑛−1) (3.68)

Step 2: Let 𝑚 = 𝑛
2 , compute:

𝐲′ = 𝐅𝑚𝐜′ (3.69)
𝐲″ = 𝐅𝑚𝐜″ (3.70)

Step 3: Merge 𝐲′ and 𝐲″ to get 𝐲′, for 𝑗 = 0, 1, … ,𝑚 − 1:

𝐲𝑗 = 𝐲′𝑗 + 𝑤
𝑗
𝑛𝐲″𝑗 (3.71)

Because 𝐲𝑚+𝑗 = 𝐲′𝑗 +𝑤
𝑚+𝑗
𝑛 𝐲″𝑗 , also 𝑤𝑚𝑛 = 􏿶𝑒

2𝜋𝑘𝑗
2𝑚 􏿹

𝑚
= 𝑒𝜋𝑖 = −1, we have

𝐲𝑚+𝑗 = 𝐲′𝑗 − 𝑤
𝑗
𝑛𝐲″𝑗 . (3.72)

4 Determinants

• Let𝐀 be an 𝑛×𝑛matrix. Let𝐀𝑖𝑗 ∈ ℝ(𝑛−1)×(𝑛−1) be the submatrix of𝐀, which
is formed by deleting the 𝑖-th row and 𝑗-th column of𝐀. The (𝑖, 𝑗)- cofactor of
𝐀, denoted by 𝑐𝑖𝑗, is given by

𝑐𝑖𝑗 = (−1)𝑖+𝑗 det𝐀𝑖𝑗. (4.1)
• Let 𝐀 = [𝑎𝑖𝑗] be an 𝑛 × 𝑛 matrix with 𝑛 ≥ 2. The determinant of 𝐀, denoted
by det𝐀, is defined by

det𝐀 = 𝑎11𝑐11 + 𝑎12𝑐12 +⋯+ 𝑎1𝑛𝑐1𝑛 (4.2)
= 𝑎11 det𝐀11 − 𝑎12 det𝐀12 +⋯+ (−1)𝑛+1𝑎1𝑛 det𝐀1𝑛. (4.3)

This is also known as the cofactor expansion of 𝐀 on the first row.
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Remark.

– det𝐀 can be computed by cofactor expansion on any arbitrary row/column.
– The time complexity of cofactor expansion is 𝑂(𝑛!).

• Theorem 4.1 (Determinant of Triangular Matrix)
If𝐀 is a triangular matrix, then det𝐀 is the product of the diagonal entries of
𝐀.

• Theorem 4.2 (Determinant and Row Operations)
Let 𝐀 be an 𝑛 × 𝑛 matrix.

1. Replacement does not change determinants. If𝐀
𝑅𝑖→𝑅𝑖+𝑐𝑅𝑗
−−−−−−−−−−→ 𝐁, then det𝐁 =

det𝐀.

2. Interchange changes the signs of determinants. If𝐀
𝑅𝑖↔𝑅𝑗
−−−−−−→ 𝐁, then det𝐁 =

− det𝐀.

3. Scaling scales determinants. If 𝐀
𝑅𝑖→𝑐𝑅𝑖−−−−−−→ 𝐁, then det𝐁 = 𝑐 det𝐀.

Proof.

3. It can be easily proved using cofactor expansion.
2. Suppose we interchange 𝑖-th and 𝑖 + 1-th row of 𝐀, which results in 𝐁. If

we expand on the 𝑖-th row of 𝐁, we have

det𝐁 =
𝑛
􏾜
𝑘=1

𝑏𝑖𝑗(−1)𝑖+𝑗 det𝐁𝑖𝑗 (4.4)

=
𝑛
􏾜
𝑘=1

𝑎𝑖𝑗(−1)𝑖+𝑗+1 det𝐀𝑖𝑗 = − det𝐀. (4.5)

Now we need to interchange 𝑖-th and 𝑗-th row. Suppose 𝑖 < 𝑗, we can
interchange (𝑖, 𝑖+1), (𝑖+1, 𝑖+2), … , (𝑗−1, 𝑗) rows until the 𝑖-th row becomes
the 𝑗-th row. Now, we have done 𝑗 − 𝑖 interchanges, and 𝑗-th row becomes
the 𝑗 − 1-th row. We keep interchanging (𝑗 − 1, 𝑗 − 2), (𝑗 − 2, 𝑗 − 3), … , (𝑖+ 1, 𝑖)
rows until the 𝑗 − 1-th row becomes the 𝑖-th row. In total, we did 2(𝑗− 𝑖)−1
interchanges. Therefore, det𝐁 = − det𝐀.
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1. The determinant of 𝐁 is given by

det𝐁 =
𝑛
􏾜
𝑘=1
(𝑎𝑖𝑘 + 𝑐𝑎𝑗𝑘)(−1)𝑖+𝑘 det𝐀𝑖𝑘 (4.6)

=
𝑛
􏾜
𝑘=1

𝑎𝑖𝑘(−1)𝑖+𝑘 det𝐀𝑖𝑘 + 𝑐
𝑛
􏾜
𝑘=1

𝑎𝑗𝑘(−1)𝑖+𝑘 det𝐀𝑖𝑘 (4.7)

= det𝐀 + 𝑐
𝑛
􏾜
𝑘=1

𝑎𝑗𝑘(−1)𝑖+𝑘 det𝐀𝑖𝑘. (4.8)

To compute the second term in the sum, we can construct a matrix 𝐂 as
follows: let 𝐂 = 𝐀, then let the 𝑖-th row of 𝐂 be equal to the 𝑗-th row of
𝐂. Obviously, 𝐂 is a matrix with two identical rows. If we interchange
the two identical rows of 𝐂 to get 𝐂′, we know that 𝐂 = 𝐂′. Given that
det𝐂 = − det𝐂′ = − det𝐂, we know det𝐂 = 0. As a result, det𝐁 = det𝐂.

Remark. det(𝑐𝐀) = 𝑐𝑛 det𝐀

Thoughts.

We can also use replacement and scaling to prove interchange. Use𝐁 to denote
the matrix after row operations. Denote the initial row 𝑖 and row 𝑗 by 𝑅′𝑖 and
𝑅′𝑗 , respectively. Interchanging is equivalent to the following sequence row
operations:
Step Row Operation Value of 𝑅𝑖 Value of 𝑅𝑗 Value of det𝐁
1 𝑅𝑖 → 𝑅𝑖 + 𝑅𝑗 𝑅′𝑖 + 𝑅′𝑗 𝑅′𝑗 det𝐀
2 𝑅𝑗 → −2𝑅𝑗 𝑅′𝑖 + 𝑅′𝑗 −2𝑅′𝑗 −2 det𝐀
3 𝑅𝑗 → 𝑅𝑗 + 𝑅𝑖 𝑅′𝑖 + 𝑅′𝑗 𝑅′𝑖 − 𝑅′𝑗 −2 det𝐀
4 𝑅𝑖 → 𝑅𝑖 − 𝑅𝑗 2𝑅′𝑗 𝑅′𝑖 − 𝑅′𝑗 −2 det𝐀
5 𝑅𝑖 →

1
2𝑅𝑖 𝑅′𝑗 𝑅′𝑖 − 𝑅′𝑗 − det𝐀

6 𝑅𝑗 → 𝑅𝑗 + 𝑅𝑖 𝑅′𝑗 𝑅′𝑖 − det𝐀

• Properties of Determinant

– A square matrix 𝐀 is invertible iff. det𝐀 ≠ 0.



30MA51100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang
Section 4: Determinants

Proof. Use row operations to reduce the matrix to triangular form; mul-
tiply the values on the diagonal.

– det(𝐀𝐁) = det𝐀 det𝐁

Proof. If 𝐀 is not invertible, we need to prove 𝐀𝐁 is not invertible. Sup-
pose 𝐁 is not invertible, then ∃𝐲 ≠ 𝟎, 𝐁𝐲 = 𝐀𝐁𝐲 = 0. Therefore, 𝐀𝐁 is
not invertible. Suppose 𝐁 is invertible, because 𝐀 is not invertible, ∃𝐱 ≠ 𝟎,
𝐀𝐱 = 0. We can find 𝐲 such that 𝐁𝐲 = 𝐱 ⇒ 𝐲 = 𝐁−1𝐱. In this case,
𝐀𝐁𝐲 = 𝟎, 𝐲 ≠ 𝟎. Therefore, we can conclude that 𝐀𝐁 is not invertible. In
this case, it is easy to see that det(𝐀𝐁) = det𝐀 det𝐁.
If 𝐀 is invertible, we can write 𝐀 as the product of a series of elementary
row operation matrices

𝐀 = 𝐄𝑘𝐄𝑘−1⋯𝐄1𝐈. (4.9)
Since each elementary row operation will introduce a constant scale factor
to the result of the determinant, we can write

det𝐀 = det(𝐄𝑘𝐄𝑘−1⋯𝐄1) = 𝑒𝑘𝑒𝑘−1⋯𝑒1. (4.10)
It can be seen that

det𝐀𝐁 = det(𝐄𝑘𝐄𝑘−1⋯𝐄1𝐁) = 𝑒𝑘𝑒𝑘−1⋯𝑒1 det𝐁. (4.11)
Therefore, we know that det(𝐀𝐁) = det𝐀 det𝐁.

– det𝐀𝑇 = det𝐀

Proof. Suppose 𝐀 ∈ ℝ𝑛×𝑛. We can use mathematical induction to prove
that det𝐀𝑇 = det𝐀 for 𝑛 ≥ 1.
Base Case: When 𝑛 = 1, 2, it is obvious that det𝐀𝑇 = det𝐀.
Induction Hypothesis: Suppose det𝐀𝑇 = det𝐀 for 𝑛 ≥ 1.
Induction Step: We need to prove det𝐁𝑇 = det𝐁, where 𝐁 ∈ ℝ(𝑛+1)×(𝑛+1).
The cofactor expansion of the first row of 𝐁𝑇 is given by

det𝐁𝑇 =
𝑛+1
􏾜
𝑗=1

𝑏𝑗1(−1)1+𝑗 det𝐁𝑇1𝑗 (4.12)

=
𝑛+1
􏾜
𝑗=1

𝑏𝑗1(−1)1+𝑗 det𝐁1𝑗 = det𝐁. (4.13)



31MA51100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang
Section 4: Determinants

Bymathematical induction, we can conclude that det𝐀𝑇 = det𝐀 for 𝑛 ≥ 1.

– det𝐀−1 = 1
det𝐀

Proof. det 𝐈 = det(𝐀𝐀−1) = det𝐀 det𝐀−1 = 1.

– det(𝐁−1𝐀𝐁) = det𝐀

• Theorem 4.3 (Cramer's Rule)
Let 𝐀 be an 𝐧 × 𝐧 invertible matrix. For any 𝐛 ∈ ℝ𝑛, the unique solution of
𝐀𝐱 = 𝐛 has entries given by

𝐱𝑖 =
det𝐀𝑖(𝐛)
det𝐀 , (4.14)

where 𝐀𝑖(𝐛) denotes the matrix 𝐀 with the 𝑖-th column replaced by 𝐛.

Proof. Denote the 𝑖-th column of 𝐀 by 𝐚𝑖, it can be seen that

𝐈𝑖(𝐱) = [ 𝐞1 ⋯ 𝐞𝑖−1 𝐱 ⋯ 𝐞𝑛 ],
𝐀𝐈𝑖(𝐱) = [ 𝐀𝐞1 ⋯ 𝐀𝐞𝑖−1 𝐀𝐱 ⋯ 𝐀𝐞𝑛 ]

= [ 𝐚1 ⋯ 𝐚𝑖−1 𝐛 ⋯ 𝐚𝑛 ]
= 𝐀𝑖(𝐛).

(4.15)

That is, det(𝐀𝐈𝑖(𝐱)) = det𝐀𝑖(𝐛) ⇒ det𝐀 det 𝐈𝑖(𝐱) = det𝐀𝑖(𝐛). Consider
the value det 𝐈𝑖(𝐱), if we use cofactor expansion across the 𝑖-th column, the
cofactors corresponding to elements other than 𝐱𝑖 will be 0, because there will
be an all zero row in the submatrix; the cofactor corresponding to 𝐱𝑖 will be
(−1)𝑖+𝑖 det 𝐈𝑛−1 = 1. As a result, we know that det(𝐀𝐈𝑖(𝐱)) = 𝐱𝑖. That is,
(det𝐀)𝐱𝑖 = det𝐀𝑖(𝐛).

• Theorem 4.4 (Determinant and Inverse)
Let 𝐀 be an 𝑛 × 𝑛 matrix. The adjugate of 𝐀 is given by adj𝐀 = 𝐂𝑇 , where
the cofactor matrix 𝐂 is given by

𝐂 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐11 𝑐12 ⋯ 𝑐1𝑛
… … ⋱ …
𝑐𝑛1 𝑐𝑛2 ⋯ 𝑐𝑛𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.16)



32MA51100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang
Section 5: Eigenvalues and Eigenvectors

If 𝐀 is invertible, its inverse is given by

𝐀−1 = 1
det𝐀 adj𝐀 = 1

det𝐀𝐂
𝑇 (4.17)

Proof. Consider the matrix 𝐀 adj𝐀 = 𝐀𝐂𝑇 , whose (𝑖, 𝑗) entry is given by

𝐀𝐂𝑇𝑖,𝑗 =
𝑛
􏾜
𝑘=1

𝑎𝑖𝑘𝑐𝑗𝑘. (4.18)

When 𝑖 = 𝑗, it is the cofactor expansion of det𝐀. Therefore, the diagonal
elements of 𝐀𝐂𝑇 equal to det𝐀. When 𝑖 ≠ 𝑗, it is equivalent to the cofactor
expansion of 𝐀′, which is matrix 𝐀 with the 𝑖-th row equal to the 𝑗-th row.
It can be seen that det𝐀′ = 0. That is,

𝐀𝐂𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

det𝐀
det𝐀

⋱
det𝐀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (det𝐀)𝐈. (4.19)

It can be seen that 𝐀 𝐂𝑇
det𝐀 = 𝐈, which implies 𝐂𝑇

det𝐀 = 𝐀−1.
• Theorem 4.5 (Volume After Linear Transformation)
Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be a linear transformation with standard matrix 𝐀. Then
vol(𝑇(𝐯)) = | det𝐀| vol(𝐯).

• The parallelpiped determined by 𝑛 vectors 𝐯1, 𝐯2, … , 𝐯𝑛 is the subset
𝑃 = {𝑎1𝐱1 + 𝑎2𝐱2 +⋯+ 𝑎𝑛𝐱𝑛 ∣ 0 ≤ 𝑎1, 𝑎2, … 𝑎𝑛 ≤ 1}. (4.20)

• Theorem 4.6 (Determinant and Volume)
Let 𝐯1, 𝐯2, … , 𝐯𝑛 be 𝑛 vectors in ℝ𝑛, let 𝑃 be the parallelpiped determined by
these vectors, and let 𝐀 = 􏿮𝐯1 𝐯2 ⋯ 𝐯𝑛􏿱. The volume of 𝑃 is given by
vol(𝑃) = | det𝐀|.

Proof. Aproof for the two theorems above can be found in https://textbooks.

math.gatech.edu/ila/determinants-volumes.html.

https://textbooks.math.gatech.edu/ila/determinants-volumes.html
https://textbooks.math.gatech.edu/ila/determinants-volumes.html
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5 Eigenvalues and Eigenvectors

• Let 𝐀 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐀 is a vector 𝐯 such that
– 𝐯 ≠ 𝟎
– 𝐀𝐯 = 𝜆𝐯 for some scalar 𝜆
A scalar 𝜆 is called an eigenvalue if 𝐀𝐱 = 𝜆𝐱 has a nontrivial solution; such an
𝐱 is called an eigenvector corresponding to 𝜆 (𝜆-eigenvector).

Remark. Eigenvectors cannot be zero, eigenvalues can be zero.
• Let 𝜆 be an eigenvalue of 𝐀. The eigenspace of 𝐀 corresponding to 𝜆 is the
set of all solutions to 𝐀𝐱 = 𝜆𝐱, or (𝐀 − 𝜆𝐈)𝐱 = 𝟎. That is, the 𝜆-eigenspace is
𝑁(𝐀 − 𝜆𝐈).

• Finding eigenvalues
We know that

𝐀𝐱 = 𝜆𝐱 has a nontrivial solution
⇒ (𝐀 − 𝜆𝐈)𝐱 = 𝟎 has a nontrivial solution
⇒ 𝐀− 𝜆𝐈 is not invertible
⇒ det(𝐀 − 𝜆𝐈) = 𝟎.

To find eigenvalues, we only need to solve det(𝐀 − 𝜆𝐈) = 𝟎, which is known
as the characteristic polynomial.

• The sum of eigenvalues of 𝐀 equals to the sum of diagonal entries 𝐀. The
sum of diagonal entries is known as the trace of 𝐀, which is denoted by tr𝐀.

• The product of eigenvalues of 𝐀 equals to the determinant of 𝐀.
• Theorem 5.1 (Eigenvalues of Triangular Matrices)
The eigenvalues of a triangular matrix are the entries on the main diagonal.

Example. Compute the eigenvalues and corresponding eigenvectors for

𝐀 =
⎡
⎢⎢⎢⎣
−1 3
2 0

⎤
⎥⎥⎥⎦ . (5.1)

Step 1: Find all eigenvalues by the characteristic equation.
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det(𝐀 − 𝜆𝐈) = 􏵶
−1 − 𝜆 3
2 −𝜆􏵶

= 𝜆2 + 𝜆 − 6 = 0. (5.2)

It can be seen that 𝜆1 = −3, 𝜆2 = 2.
Step 2: Find a basis for 𝑁(𝐀 − 𝜆𝐈) for each 𝜆.

For 𝜆1 = −3, the matrix is
⎡
⎢⎢⎢⎣
2 3
2 3

⎤
⎥⎥⎥⎦ . (5.3)

Transforming it to RREF:

⎡
⎢⎢⎢⎣
2 3
2 3

⎤
⎥⎥⎥⎦

(5.4)
𝑅2 𝑅2 − 𝑅1 ⎡⎢⎢⎢⎣

2 3
0 0

⎤
⎥⎥⎥⎦

(5.5)
𝑅1

1
2𝑅1

⎡
⎢⎢⎢⎢⎣
1 3

2
0 0

⎤
⎥⎥⎥⎥⎦

(5.6)

It can be seen that 𝑥2 is a free variable. Therefore, we have
⎡
⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎦ = 𝑥2

⎡
⎢⎢⎢⎢⎣
−32
1

⎤
⎥⎥⎥⎥⎦ . (5.7)

We can scale it to get the 𝜆1 eigenvector: 􏿮−3 2􏿱
𝑇
.

For 𝜆2 = 2, the matrix is
⎡
⎢⎢⎢⎣
−3 3
2 −2

⎤
⎥⎥⎥⎦ . (5.8)

Transforming it to RREF:

⎡
⎢⎢⎢⎣
−3 3
2 −2

⎤
⎥⎥⎥⎦

(5.9)
𝑅2 𝑅2 +

2
3𝑅1 ⎡⎢⎢⎢⎣

−3 3
0 0

⎤
⎥⎥⎥⎦

(5.10)
𝑅1 − 13𝑅1 ⎡⎢⎢⎢⎣

1 −1
0 0

⎤
⎥⎥⎥⎦

(5.11)

It can be seen that 𝑥2 is a free variable. Therefore, we have
⎡
⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎦ = 𝑥2

⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ . (5.12)

The 𝜆1 eigenvector is 􏿮1 1􏿱
𝑇
.
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• Theorem 5.2 (Linear Independence of Eigenvectors)
If 𝐯1, … , 𝐯𝑟 are eigenvectors corresponding to distinct eigenvalues 𝜆1, … , 𝜆𝑟 of
an 𝑛 × 𝑛 matrix 𝐀. Then the set {𝐯1, … , 𝐯𝑟} is linearly independent.

Proof. We can prove it by contradiction. Suppose {𝐯1, … , 𝐯𝑟} is linearly de-
pendent. That is, there exists some nonzero 𝑐1, … , 𝑐𝑟 such that 𝑐1𝐯1+…+𝑐𝑟𝐯𝑟 =
𝟎.
Without loss of generality, assume 𝑐1 ≠ 0, and 𝜆1 is the biggest of all eigen-
vectors. Because 𝐀𝑘𝐯 = 𝜆𝑘𝐯, if we multiply 𝐀𝑘 to the equation above, we
have

𝑐1𝜆𝑘1𝐯1 + 𝑐2𝜆𝑘2𝐯2 +⋯+ 𝑐𝑟𝜆𝑘𝑟𝐯𝑟 = 𝟎 (5.13)

𝑐1𝐯1 + 𝑐2 􏿶
𝜆2
𝜆1
􏿹
𝑘
𝐯2 +⋯+ 𝑐𝑟 􏿶

𝜆𝑟
𝜆1
􏿹
𝑘
𝐯𝑟 = 𝟎. (5.14)

Because 𝑘 is arbitrary, on the left hand side, we can get

lim
𝑘→∞

𝑐1𝐯1 + 𝑐2 􏿶
𝜆2
𝜆1
􏿹
𝑘
𝐯2 +⋯+ 𝑐𝑟 􏿶

𝜆𝑟
𝜆1
􏿹
𝑘
𝐯𝑟 = 𝑐1𝐯1. (5.15)

Because 𝑐1𝐯1 ≠ 𝟎, we have reached a contradiction. Therefore, {𝐯1, … , 𝐯𝑟}
must be linearly independent.

• Properties of Eigenvalues/Eigenvectors
Suppose 𝜆 is an eigenvalue of 𝐀 ∈ ℝ𝑛; 𝐯 is the corresponding eigenvector of
𝜆

– 𝐀 has at most 𝑛 distinct eigenvalues
– 𝜆 is an eigenvalue of 𝐀𝑇

– 𝐯 is a 𝜆𝑘-eigenvector of 𝐀𝑘 (𝐀𝑘𝐯 = 𝜆𝑘𝐯)
– 𝐯 is a 𝑐𝜆-eigenvector of 𝑐𝐀 (𝑐𝐀𝐯 = 𝑐(𝐀𝐯) = (𝑐𝜆)𝐯)
– If 𝐀 is invertible, 𝐯 is a 𝜆−1-eigenvector of 𝐀−1 (𝐀−1𝐀𝐯 = 𝐀−1𝜆𝐯 ⇒
𝐀−1𝐯 = 𝜆−1𝐯)

Example. If −1, 1, 2 are eigenvalues of 𝐀. Find eigenvalues of 𝐀2 − 𝐀 + 𝐈.
It can be seen that
(𝐀2 − 𝐀 + 𝐈)𝐯 = 𝐀2𝐯 − 𝐀𝐯 + 𝐈𝐯 = 𝜆2𝐯 − 𝜆𝐯 + 𝐯 = (𝜆2 − 𝜆 + 1)𝐯. (5.16)
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For 𝜆 = −1, 1, 2, we know that the eigenvalues of 𝐀2 − 𝐀 + 𝐈 are given by
3, 1, 3.

• An 𝑛×𝑛matrix 𝐀 is similar to another 𝑛×𝑛matrix 𝐁 if there is an invertible
𝑛 × 𝑛 matrix 𝐏 such that 𝐀 = 𝐏𝐁𝐏−1.

• A square matrix 𝐀 is said to be diagonalizable if 𝐀 is similar to a diagonal
matrix. That is, if𝐀 = 𝐏𝐃𝐏−1 for some invertible matrix 𝐏 and some diagonal
matrix 𝐃.

Remark. If we can find 𝐀 = 𝐏𝐃𝐏−1, then 𝐀𝑘 = (𝐏𝐃𝐏−1)𝑘 = 𝐏𝐃𝑘𝐏−1.
• Theorem 5.3 (Diagonalization)
An 𝑛×𝑛matrix𝐀 is diagonalizable iff. 𝐀 has 𝑛 linearly independent eigenvec-
tors. Moreover, if {𝐯1, 𝐯2, … , 𝐯𝑛} is a set of linearly independent eigenvectors
with corresponding eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛, then we can take

𝐏 = 􏿮𝐯1 𝐯2 ⋯ 𝐯𝑛􏿱 (5.17)

𝐃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆1
𝜆2

⋱
𝜆𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.18)

Proof. From 𝐀 = 𝐏𝐃𝐏−1 we know 𝐀𝐏 = 𝐏𝐃. Looking at each matrix
column by column, we have

􏿮𝐀𝐯1 𝐀𝐯2 ⋯ 𝐀𝐯𝑛􏿱 = 􏿮𝜆1𝐯1 𝜆2𝐯2 ⋯ 𝜆𝑛𝐯𝑛􏿱 . (5.19)
It can be seen that columns of 𝐏 are eigenvectors; the diagonal of 𝐃 is made
up of corresponding eigenvalues.

Remark. 𝐏 and 𝐃 are not unique.
• Theorem 5.4 (Algebraic and Geometric Multiplicity)
Let 𝐀 be an 𝑛 × 𝑛 matrix whose distinct eigenvalues are:

𝜆1 of multiplicity 𝑚1
⋮

𝜆𝑝 of multiplicity 𝑚𝑝
Then 𝐀 is diagonalizable iff. both of the following statements are true:
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1. dim(𝜆𝑖-eigenspace) = 𝑚𝑖, 𝑖 = 1, 2, … , 𝑝
2. 𝑚1 + 𝑚2 +⋯+𝑚𝑝 = 𝑛

dim(𝜆𝑖-eigenspace) is known as the geometric multiplicity of 𝜆𝑖; 𝑚𝑖 is known
as the algebraic multiplicity of 𝜆𝑖. It holds that

1 ≤ dim(𝜆𝑖-eigenspace) ≤ 𝑚𝑖. (5.20)

Remark. An 𝑛 × 𝑛 matrix is diagonalizable if it has 𝑛 distinct eigenvalues.
• Differential Equations
Suppose we want to solve a linear system of differential equations

𝑑𝐮
𝑑𝑡 = 𝐀𝐮, (5.21)

where

𝐮(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1(𝑡)
𝑢2(𝑡)
⋮

𝑢𝑛(𝑡)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.22)

is a vector of smooth functions, and 𝐀 ∈ ℝ𝑛×𝑛. Consider the simple case
𝑢′(𝑡) = 𝑎𝑢(𝑡), we can write

𝑢′(𝑡) = 𝑎𝑢(𝑡) (5.23)

⇒ 𝑑𝑢
𝑑𝑡 = 𝑎𝑢(𝑡) (5.24)

⇒ 𝑑𝑢
𝑢 = 𝑎 𝑑𝑡 (5.25)

⇒􏾙
𝑑𝑢
𝑢 = 􏾙𝑎 𝑑𝑡 (5.26)

⇒ ln |𝑢| = 𝑎𝑡 + 𝑐 (5.27)
⇒ |𝑢| = 𝑒𝑐𝑒𝑎𝑡 (5.28)
⇒ 𝑢 = 𝑐′𝑒𝑎𝑡, (5.29)

where 𝑐′ is a constant.

– Let 𝐀 be an 𝑛 × 𝑛 matrix. The matrix exponential of 𝐀 is an 𝑛 × 𝑛 matrix
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defined by

𝑒𝐀 = 𝐈 + 𝐀 + 𝐀
2

2! +⋯ + 𝐀
𝑛

𝑛! . (5.30)
It can be seen that the definition is derived from Maclaurin series.

– If 𝐃 is diagonal with 𝐃 = diag(𝜆1, … , 𝜆𝑛), then 𝑒𝐃 = diag(𝑒𝜆1 , … , 𝑒𝜆𝑛).
– If 𝐀 is diagonalizable, that is, 𝐀 = 𝐏𝐃𝐏−1, we know 𝐀𝑘 = 𝐏𝐀𝑘𝐏−1. Then,

we have 𝐞𝐴 = ∑∞
𝑛=0

(𝐏𝐃𝐏−1)𝑛
𝑛! = 𝐏 􏿵∑∞

𝑛=0
𝐃𝑛

𝑛! 􏿸 𝐏
−1 = 𝐏𝑒𝐃𝐏−1.

– Properties
∗ 𝑒𝐀𝑠𝑒𝐀𝑡 = 𝑒𝐀(𝑠+𝑡)

∗ 𝑒𝐀 ≠ 𝑒𝐁 because 𝐀𝐁 ≠ 𝐁𝐀 in general
∗ 𝑒𝐀𝑡𝑒−𝐀𝑡 = 𝐈
∗ 𝑑

𝑑𝑡 􏿴𝑒
𝐀𝑡􏿷 = 𝐀𝑒𝐀𝑡

From 5.29 and the properties above, we know that the solution to 𝑑𝐮
𝑑𝑡 = 𝐀𝐮

is 𝐮(𝑡) = 𝑒𝐀𝑡𝐜, where 𝐜 is a vector of constants.
– Theorem 5.5 (Solution to First Order Differential Equations)

Let 𝐀 be an 𝑛 × 𝑛 matrix. Then 𝑑𝐮
𝑑𝑡 = 𝐀𝐮 has the solution

𝐮(𝑡) = 𝑒𝐀𝑡𝐮(0). (5.31)
If 𝐀 is diagonalizable and 𝐀 = 𝐏𝐃𝐏−1, then

𝐮(𝑡) = 𝐏𝑒𝐃𝑡𝐏−1𝐮(0), (5.32)
where columns of 𝐏 are the eigenvectors of 𝐀, and the diagonal entries of
𝐃 are the corresponding eigenvalues.

Remark. When 𝐀 is diagonalizable, if we set 𝐜 = 𝐏−1𝐮(0), we can write

𝐮(𝑡) = 􏿮𝐯1 𝐯2 ⋯ 𝐯𝑛􏿱

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝜆1𝑡
𝑒𝜆1𝑡

⋱
𝑒𝜆𝑛𝑡

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐜1
𝐜2
⋮
𝐜𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.33)

= 𝐜1𝑒𝜆1𝑡𝐯1 + 𝐜2𝑒𝜆2𝑡𝐯2 +⋯+ 𝐜𝑛𝑒𝜆𝑛𝑡𝐯𝑛. (5.34)
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Therefore, when 𝐀 is diagonalizable, finding the general solution to 𝑑𝐮
𝑑𝑡 =

𝐀𝐮 is essentially the same as finding the eigenvalues and eigenvectors of 𝐀.

Example. Find the solutions to the differential equation
⎡
⎢⎢⎢⎣
𝑥′
𝑦′

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−2 1
1 −2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
𝑥
𝑦

⎤
⎥⎥⎥⎦ . (5.35)

The eigenvalues and eigenvectors are given by𝜆1 = −1, 𝐯1 = (1, 1); 𝜆2 = −3,
𝐯2 = (1, −1), respectively. The fundamental solutions are given by

𝑒−𝑡
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ and 𝑒−3𝑡

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ . (5.36)

A general solution is given by
⎡
⎢⎢⎢⎣
𝑥(𝑡)
𝑦(𝑡)

⎤
⎥⎥⎥⎦ = 𝑐1𝑒−𝑡

⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + 𝑐2𝑒−3𝑡

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ . (5.37)

Suppose we are given 𝐮(0) = (2, 1), we need to solve

𝑐1
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + 𝑐2

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎦ (5.38)

for a particular solution. This is essentially solving the linear system
⎡
⎢⎢⎢⎣
1 1
1 −1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎦ . (5.39)

It can be seen that
⎡
⎢⎢⎢⎣
𝑐1
𝑐2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 1
1 −1

⎤
⎥⎥⎥⎦
−1 ⎡
⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎦ (5.40)

=
⎡
⎢⎢⎢⎢⎣
1
2

1
21

2 −12

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
2
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
3
21
2

⎤
⎥⎥⎥⎥⎦ . (5.41)

Remark. Steps of solving 𝑑𝐮
𝑑𝑡 = 𝐀𝐮 when 𝐀 is diagonalizable:

1. Find all eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 of 𝐀
2. Find a basis for each 𝑁(𝐀 − 𝜆𝐈) to get the eigenvectors 𝐯1, 𝐯2, … , 𝐯𝑛
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3. Write the general solution using 5.34; the 𝐜𝑖’s are left in the result as
unknowns

4. If given an initial condition (e.g., 𝐮(0) = 𝐥), solve the equation 𝐜1𝐯1 +
⋯+ 𝐜𝑛𝐯𝑛 = 𝐮(0) for 𝐜1, … , 𝐜𝑛

– The complex case: when real matrix 𝐀 has complex eigenvalues
∗ If 𝐯 is a 𝜆-eigenvector of a real matrix 𝐀, then 𝐯̄ is a 𝜆̄-eigenvector of 𝐀.

Proof. Because 𝐀 is real, we know 𝐀𝐯̄ = 𝐀𝐯 = 𝜆𝐯 = 𝜆̄𝐯̄.
∗ Consider a pair of complex eigenvalues and eigenvectors 𝜆 = 𝑎 + 𝑏𝑖, 𝐯
and 𝜆̄ = 𝑎 − 𝑏𝑖, 𝐯̄. For the fundamental solution 𝑒𝜆𝑡𝐯, suppose we can
decompose 𝐯 = ℜ(𝐯) + 𝑖ℑ(𝐯), then we have
𝑒𝜆𝑡𝐯 = 𝑒(𝑎+𝑏𝑖)𝑡[ℜ(𝑣) + 𝑖ℑ(𝑣)] (5.42)

= 𝑒𝑎𝑒𝑖𝑏𝑡[ℜ(𝑣) + 𝑖ℑ(𝑣)] (5.43)
= 𝑒𝑎 {(cos 𝑏𝑡 + 𝑖 sin 𝑏𝑡)[ℜ(𝑣) + 𝑖ℑ(𝑣)]} (5.44)
= 𝑒𝑎 {cos 𝑏𝑡ℜ(𝑣) − sin 𝑏𝑡ℑ(𝑣) + 𝑖 [cos 𝑏𝑡ℑ(𝑣) + sin 𝑏𝑡ℜ(𝑣)]} . (5.45)

Meanwhile, we can write
𝑒𝜆̄𝑡𝐯̄ = 𝑒(𝑎−𝑏𝑖)𝑡[ℜ(𝑣) − 𝑖ℑ(𝑣)] (5.46)

= 𝑒𝑎𝑒−𝑖𝑏𝑡[ℜ(𝑣) − 𝑖ℑ(𝑣)] (5.47)
= 𝑒𝑎 {(cos 𝑏𝑡 − 𝑖 sin 𝑏𝑡)[ℜ(𝑣) − 𝑖ℑ(𝑣)]} (5.48)
= 𝑒𝑎 {cos 𝑏𝑡ℜ(𝑣) − sin 𝑏𝑡ℑ(𝑣) − 𝑖 [cos 𝑏𝑡ℑ(𝑣) + sin 𝑏𝑡ℜ(𝑣)]} . (5.49)

It can be seen that 𝑒𝜆𝑡𝐯 and 𝑒𝜆̄𝑡𝐯̄ are complex conjugates.
∗ For now, the solutions for 𝐮 has complex numbers. If we split 𝐮(𝑡) =
𝐟(𝑡) + 𝑖𝐠(𝑡), where 𝐟 and 𝐠 are real functions. It can be seen that

𝑑𝐮
𝑑𝑡 = 𝐀𝐮 (5.50)

⇒ 𝐟′(𝑡) + 𝑖𝐠′(𝑡) = 𝐀[𝐟(𝑡) + 𝑖𝐠(𝑡)] (5.51)
⇒ 𝐟′(𝑡) + 𝑖𝐠′(𝑡) = 𝐀𝐟(𝑡) + 𝑖𝐀𝐠(𝑡) (5.52)

Since 𝐟 and 𝐠 are real, it can be seen that they are both solutions to 𝑑𝐮
𝑑𝑡 =𝐀𝐮.

∗ Because 𝑒𝜆𝑡𝐯 and 𝑒𝜆̄𝑡𝐯̄ are complex conjugates, their real parts are the
same; their absolute values of their imaginary parts are identical. There-
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fore, we only need the real part and imaginary part of 𝑒𝜆𝑡𝐯, and they are
the two real solutions to the differential equations.

Example. Find a real solution to

𝐱′(𝑡) =
⎡
⎢⎢⎢⎣
−2 −2.5
10 −2

⎤
⎥⎥⎥⎦ 𝐱(𝑡). (5.53)

The eigenvalues are given by 𝜆1 = −2 + 5𝑖, 𝜆2 = −2 − 5𝑖. Because they
are complex conjugates, we only need to compute the real solution for
𝜆1. The 𝜆1-eigenvector is (𝑖, 2). Decomposing 𝐯𝑒𝜆𝑡, we have

⎡
⎢⎢⎢⎣
𝑖
2

⎤
⎥⎥⎥⎦ 𝑒(−2+5𝑖)𝑡 =

⎡
⎢⎢⎢⎣
𝑖
2

⎤
⎥⎥⎥⎦ 𝑒−2𝑡𝑒𝑖(5𝑡) (5.54)

=
⎡
⎢⎢⎢⎣
𝑖
2

⎤
⎥⎥⎥⎦ 𝑒−2𝑡(cos 5𝑡 + 𝑖 sin 5𝑡) (5.55)

=
⎡
⎢⎢⎢⎣
𝑖(cos 5𝑡 + 𝑖 sin 5𝑡)
2(cos 5𝑡 + 𝑖 sin 5𝑡)

⎤
⎥⎥⎥⎦ 𝑒−2𝑡 (5.56)

=
⎡
⎢⎢⎢⎣
− sin 5𝑡
2 cos 5𝑡

⎤
⎥⎥⎥⎦ 𝑒−2𝑡 + 𝑖

⎡
⎢⎢⎢⎣
cos 5𝑡
2 sin 5𝑡

⎤
⎥⎥⎥⎦ 𝑒−2𝑡. (5.57)

Therefore, the real solution is given by

𝐱(𝑡) = 𝑐1
⎡
⎢⎢⎢⎣
− sin 5𝑡
2 cos 5𝑡

⎤
⎥⎥⎥⎦ 𝑒−2𝑡 + 𝑐2

⎡
⎢⎢⎢⎣
cos 5𝑡
2 sin 5𝑡

⎤
⎥⎥⎥⎦ 𝑒−2𝑡. (5.58)

– Theorem 5.6 (Stability of First Order Differential Equations)

The differential equation 𝑑𝐮
𝑑𝑡 = 𝐀𝐮 is

∗ stable if all ℜ(𝜆𝑖) < 0
∗ neutrally stable if all ℜ(𝜆𝑖) ≤ 0 and at least one ℜ(𝜆𝑖) = 0
∗ unstable if any ℜ(𝜆𝑖) > 0
Here, 𝜆𝑖’s are the eigenvalues of 𝐀.

– Second order equations

Consider 𝑑
2𝐮
𝑑𝑡2 = 𝐀𝐮, where 𝐀 only has negative eigenvalues. We take func-
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tions of the form 𝐮(𝑡) = 𝑒𝑖𝑤𝑡𝐯, it can be seen that
𝑑2
𝑑𝑡2 𝑒

𝑖𝑤𝑡𝐯 = (𝑖𝑤)2𝑒𝑖𝑤𝑡𝐯 = −𝑤2𝑒𝑖𝑤𝑡𝐯. (5.59)

If we let 𝐀𝑒𝑖𝑤𝑡𝐯 = −𝑤2𝑒𝑖𝑤𝑡𝐯, we have
𝐀𝐯 = −𝑤2𝐯. (5.60)

If we get an eigenvalue 𝜆 and corresponding eigenvector 𝐯 for 𝐀, we have
to solutions

𝑒𝑖√−𝜆𝑡𝐯 and 𝑒−𝑖√−𝜆𝑡𝐯. (5.61)
In this case, 𝑤 = √−𝜆 is called the frequency connected to the decay rate 𝜆.

– Theorem 5.7 (Solution to Second Order Differential Equations)
Let 𝐀 be an 𝑛 × 𝑛matrix. If 𝐀 has negative eigenvalues 𝜆1, … , 𝜆𝑛, let 𝑤𝑗 =

√
−𝜆𝑗, then

𝑑2𝐮
𝑑𝑡2 = 𝐀𝐮 has the solution

𝐮(𝑡) = 􏿴𝑐1𝑒𝑖𝑤1𝑡 + 𝑑1𝑒−𝑖𝑤1𝑡􏿷 𝐯1 +⋯+ 􏿴𝑐𝑛𝑒𝑖𝑤𝑛𝑡 + 𝑑𝑛𝑒−𝑖𝑤𝑛𝑡􏿷 𝐯𝑛, (5.62)
where 𝐯𝑖 is a 𝜆𝑖-eigenvector. The general real solution is given by

𝐮(𝑡) = (𝑎1 cos𝑤1𝑡 + 𝑏1 sin𝑤1𝑡)𝐯1 +⋯+ (𝑎𝑛 cos𝑤𝑛𝑡 + 𝑏𝑛 sin𝑤𝑛𝑡)𝐯𝑛.
(5.63)

Example. Solve

𝑑2𝐮
𝑑𝑡2 =

⎡
⎢⎢⎢⎣
−2 1
1 −2

⎤
⎥⎥⎥⎦ 𝐮. (5.64)

The eigenvalues and eigenvectors are 𝜆1 = −1, 𝐯1 = (1, 1); 𝜆2 = −3, 𝐯2 =
(1, −1). The frequencies are 𝑤1 = √−𝜆1 = 1, 𝑤2 = √−𝜆2 = √3.
The general solution has the form

𝐮(𝑡) = (𝑎1 cos 𝑡 + 𝑏1 sin 𝑡)
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + (𝑎2 cos√3𝑡 + 𝑏2 sin√3𝑡)

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ . (5.65)

Suppose the initial conditions are given by 𝐮(0) = (1, 0), 𝐮′(0) = (0, 0).
Here, we can interpret 𝐮 as the position, 𝐮′ as velocity, and 𝐮″ as accelera-
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tion. It can be seen that

𝐮′(𝑡) = (−𝑎1 sin 𝑡 + 𝑏1 cos 𝑡)
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + (−√3𝑎2 sin√3𝑡 + 𝑏2√3 cos√3𝑡)

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ .

(5.66)
We can write the following equations:

𝑎1
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + 𝑎2

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎦ (5.67)

𝑏1
⎡
⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎦ + √3𝑏2

⎡
⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎦ . (5.68)

It can be seen that 𝑎1 = 𝑎2 =
1
2 , 𝑏1 = 𝑏2 = 0.

• The conjugate transpose of𝐀, denoted by𝐀𝐻 , is equal to 𝐀̄𝑇 . 𝐀𝐻 is called “𝐀
Hermitian”.
Remark. If 𝐀 is a real matrix, then 𝐀𝐻 = 𝐀𝑇 .

• Inner product on ℂ𝑛: let 𝐱 and 𝐲 be two complex vectors, then their inner
product is 𝐱𝐻𝐲.

• An 𝑛 × 𝑛 complex matrix 𝐀 is a Hermitian matrix if 𝐀𝐻 = 𝐀; 𝐀 is skew-
Hermatian if 𝐀𝐻 = −𝐀.
Remark. A real symmetric matrix is Hermitian.

• Properties of Hermitian matrix
Let 𝐀 be an 𝑛 × 𝑛 Hermitian matrix, that is, 𝐀𝐻 = 𝐀.

– For any 𝐱 ∈ ℂ𝑛, 𝐱𝐻𝐀𝐱 is a real number.

Proof. (𝐱𝐻𝐀𝐱)𝐻 = 𝐱𝐻𝐀𝐻(𝐱𝐻)𝐻 = 𝐱𝐻𝐀𝐱. Therefore, 𝐱𝐻𝐀𝐱 must be real.
– Every eigenvalue of 𝐀 is real.

Proof. Suppose 𝐯 is a 𝜆-eigenvector of 𝐀. We have

𝐯𝐻𝐀𝐯 = 𝐯𝐻𝜆𝐯 = 𝜆𝐯𝐻𝐯. (5.69)
That is,

𝜆 = 𝐯𝐻𝐀𝐯
𝐯𝐻𝐯 . (5.70)
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Since both the numerator and denominator are real, we know 𝜆 is real.
– Let 𝐯1, 𝐯2 be two eigenvectors of 𝐀 corresponding to distinct eigenvalues
𝜆1 and 𝜆2. Then 𝐯1 ⟂ 𝐯2.

Proof.

𝜆̄1𝐯𝐻1 𝐯2 = (𝜆1𝐯1)𝐻𝐯2 = (𝐀𝐯1)𝐻𝐯2 = 𝐯𝐻1 𝐀𝐻𝐯2 (5.71)
= 𝐯𝐻1 𝐀𝐯2 = 𝐯𝐻1 (𝜆2𝐯2) = 𝜆2𝐯𝐻1 𝐯2. (5.72)

Because the eigenvalues of 𝐀 are real, we know 𝜆̄1 = 𝜆1. Therefore, we
can write (𝜆1 − 𝜆2)𝐯𝐻1 𝐯2 = 0. Since 𝜆1 − 𝜆2 ≠ 0, it must be that 𝐯𝐻1 𝐯2 = 0.

Remark. A real symmetric matrix 𝐀 can be orthogonally diagonalized.
That is, 𝐀 = 𝐐𝚲𝐐𝑇 for some orthogonal matrix𝐐 and diagonal matrix 𝚲.

Example. Find an orthogonal diagonalization of

𝐀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 4
−2 6 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.73)

It can be seen that for 𝜆1 = 7, 𝐯1 = (−1, 2, 0), 𝐯2 = (1, 0, 1); for 𝜆2 = −2,
𝐯3 = (−2, −1, 2). Because 𝐀 is symmetric, we know 𝐯1 ⟂ 𝐯3, 𝐯2 ⟂ 𝐯3.
However, within the same eigenspace, 𝐯1 ⟂̸ 𝐯2. Therefore, we need to
apply Gram-Schmidt process to find a diagonal basis for 𝜆1-eigenspace. It
can be seen that

𝐰1 = 𝐯1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (5.74)

𝐰2 = 𝐯2 −
𝐯𝑇𝟏𝐯𝟐
𝐯𝑇𝟏𝐯𝟏

𝐯1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 1
5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.75)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
52
5
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.76)
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Normalizing each vector:

𝐮1 =
𝐰𝟏
‖𝐰𝟏‖

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
√5
2
√5
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.77)

𝐮2 =
𝐰𝟐
‖𝐰𝟐‖

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
√45
2
√45
5
√45

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.78)

𝐮3 =
𝐯𝟑
‖𝐯𝟑‖

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−23
−132
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.79)

Therefore, we have

𝐐 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
√5

4
√45

−23
2
√5

2
√45

−13
0 5

√45
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.80)

𝚲 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
7
−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.81)

• An 𝑛×𝑛 complexmatrix with orthonormal columns is called a unitary matrix.
That is, 𝐔𝐻𝐔 = 𝐈.
Remark. An orthogonal real matrix is also unitary.

Example. If 𝐊 is a skew-Hermitian matrix, then 𝑒𝐊 is a unitary matrix. Be-

cause 􏿴𝑒𝐊􏿷
𝐻
𝑒𝐊 = 𝑒𝐊𝐻𝑒𝐊 = 𝑒−𝐊𝑒𝐊 = 𝐈.

• Properties of Unitary Matrices



46MA51100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang
Section 5: Eigenvalues and Eigenvectors

Let 𝐔 be unitary, that is, 𝐔𝐻𝐔 = 𝐈.
– (𝐔𝐱)𝐻(𝐔𝐲) = 𝐱𝐻𝐲
– The eigenvalues of 𝐔 is of the form 𝑒𝑖𝜃

Proof. Let 𝐯 be a𝜆-eigenvector of𝐔. It can be seen that 𝐯𝐻𝐯 = (𝐔𝐯)𝐻(𝐔𝐯) =
(𝜆𝐯)𝐻(𝜆𝐯) = |𝜆|2𝐯𝐻𝐯. Therefore, we have |𝜆| = 1.

• Two 𝑛 × 𝑛 matrices are similar if there is an invertible matrix 𝐏 such that
𝐁 = 𝐏−1𝐀𝐏.

• Let 𝐏 be an 𝑛× 𝑛 invertible matrix. The transformation 𝐀 → 𝐏−1𝐀𝐏 is called
a similarity transformation.

• Theorem 5.8 (Eigenvalues of Similar Matrices)
Suppose 𝐁 = 𝐏−1𝐀𝐏 is a matrix similar to 𝐀. Then 𝐀 and 𝐁 have the same
eigenvalues. Moreover, if 𝐯 is a𝜆-eigenvector of𝐀, then𝐏−1𝐯 is a𝜆-eigenvector
of 𝐁.

Proof. det(𝐀 − 𝜆𝐈) = det[𝐏−1(𝐀 − 𝜆𝐈)𝐏] = det(𝐏−1𝐀𝐏 − 𝜆𝐈).
𝐁𝐏−1𝐯 = (𝐏−1𝐀𝐏)𝐏−1𝐕 = 𝐏−1𝐀𝐯 = 𝐏−1(𝜆𝐯) = 𝜆(𝐏−1𝐯).

Remark.

– If 𝐀 and 𝐁 have the same eigenvalues, they are not necessarily similar.
– If an 𝑛 × 𝑛 matrix 𝐀 has 𝑛 distinct eigenvalues, then any matrix 𝐁 has the

same eigenvalues is similar to 𝐀.

Proof. If 𝐀, 𝐁 both has 𝑛 distinct eigenvalues, they are diagonalizable.
We can write 𝐀 = 𝐏−11 𝐃𝐏1, 𝐁 = 𝐏−12 𝐃𝐏2. By theorem 5.2, we know
that both 𝐏1 and 𝐏2 are invertible. Let 𝐗 = 𝐏−12 𝐏1. Then 𝐗−1𝐁𝐗 =
(𝐏−11 𝐏2)𝐏−12 𝐃𝐏2(𝐏−12 𝐏1) = 𝐏−11 𝐃𝐏1 = 𝐀. Therefore, 𝐀 and 𝐁 are similar.

• Theorem 5.9 (Similarity and Linear Transformation)
Let 𝐵 = {𝐛1, 𝐛2, … , 𝐛𝑛} be a basis of ℝ𝑛. The 𝐵-matrix of a linear trans-
formation 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is similar to its standard matrix 𝐀. Moreover, if
𝐏 = 􏿮𝐛1 𝐛2 ⋯ 𝐛𝑛􏿱, then 𝐁 = 𝐏−1𝐀𝐏.

• Theorem 5.10 (Similarity to Triangular Matrix)
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For any 𝑛 × 𝑛 matrix 𝐀, there is a unitary matrix 𝐔 such that 𝐔−1𝐀𝐔 =
𝐔𝐻𝐀𝐔 = 𝐓 is an upper triangular matrix. This is also known as Schur de-
composition.

Example. Find a unitary matrix𝐔 so that𝐔−1𝐀𝐔 = 𝐓 is a triangular matrix.

(1) We need to find an eigenvector of 𝐀. In this case, we know 𝜆1 = 1, and
the corresponding 𝐯1 = (1, −1, 1).

(2) Find a linearly independent set containing 𝐯. In this case, we can take
{𝐯, 𝐞1, 𝐞2}.

(3) Apply Gram-Schmidt process to get a orthogonal basis. It can be seen that
𝐰1 = 𝐯1; (5.82)

𝐰2 = 𝐞1 −
𝐰𝑇
1 𝐞1

𝐰𝑇
1𝐰1

𝐰1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
31
3
−13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (5.83)

𝐰3 = 𝐞2 −
𝐰𝑇
1 𝐞2

𝐰𝑇
1𝐰1

𝐰1 −
𝐰𝑇
2 𝐞2

𝐰𝑇
2𝐰2

𝐰2 (5.84)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
21
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.85)

(4) Normalize vectors to get 𝐔.

𝐔1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√3

2
√6

0

− 1
√3

1
√6

1
√2

1
√3

− 1
√6

1
√2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.86)
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(5) Compute 𝐓1 = 𝐔−11 𝐀𝐔 = 𝐔𝑇𝐀𝐔. It can be seen that

𝐓1 =

1 24
√18

20
√6

0 −32
1
√12

0 − 3
√12

−52

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.87)

The lower block is not a triangular matrix yet. We need to repeat the
process for this block.

(6) Let

𝐁 =

⎡
⎢⎢⎢⎢⎢⎢⎣
−32

1
√12

− 3
√12

−52 .

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.88)

Repeat the steps (1)-(5) to get 𝐔2 and 𝐓2. In this case, we have

𝐔2 =

⎡
⎢⎢⎢⎢⎢⎢⎣
−12

3
√12

3
√12

1
2

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.89)

𝐓2 =

⎡
⎢⎢⎢⎢⎢⎣
−2 − 4

√12
0 −2

⎤
⎥⎥⎥⎥⎥⎦ . (5.90)

It can be seen that 𝐓2 is triangular.
(7) We need to combine 𝐔1 and 𝐔2 to get the final 𝐔.

𝐀 = 𝐔1𝐓1𝐔−11 (5.91)

= 𝐔1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 24
√18

20
√6

0
𝐁0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐔−11 (5.92)

= 𝐔1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 24
√18

20
√6

0
𝐔2𝐓2𝐔−120

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐔−11 (5.93)
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= 𝐔1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0
𝐔20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 24
√18

20
√6

0 −2 − 4
√12

0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0
𝐔−120

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐔−11 . (5.94)

Therefore, we have

𝐔 = 𝐔1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0
𝐔20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.95)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
√3

− 1
√6

1
√2

− 1
√3

1
√6

1
√2

1
√3

2
√6

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.96)

It can be seen that

𝐓 = 𝐔−1𝐀𝐔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 24
√18

20
√6

0 −2 − 4
√12

0 0 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.97)

• Theorem 5.11 (Spectral Theorem)
Every real symmetric matrix 𝐀 can be diagonalized by an orthogonal matrix
𝐐. Every Hermitian matrix can be diagonalized by a unitary matrix 𝐔. That
is,

(real) 𝐐−1𝐀𝐐 = 𝚲 or 𝐀 = 𝐐𝚲𝐐𝑇 (5.98)
(complex) 𝐔−1𝐀𝐔 = 𝚲 or 𝐀 = 𝐔𝚲𝐔𝐻 . (5.99)

The columns of 𝐐 (or 𝐔) are the orthonormal eigenvectors of 𝐀.
• The matrix 𝐍 is normal if 𝐍𝐍𝐻 = 𝐍𝐻𝐍.

Example. Hermitian matrices, skew-Hermitian matrices, and unitary matri-
ces are normal.

• Properties of Normal Matrices

– Normality is preserved under unitary similarity.
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Proof. Suppose 𝐍 is similar to 𝐗, that is, 𝐗 = 𝐔𝐻𝐍𝐔. It can be seen that
𝐗𝐻𝐗 = 𝐔𝐻𝐍𝐻𝐔𝐔𝐻𝐍𝐔 = 𝐔𝐻𝐍𝐻𝐍𝐔 = 𝐔𝐻𝐍𝐍𝐻𝐔 = 𝐔𝐻𝐍𝐔𝐔𝐻𝐍𝐻𝐔 =
𝐗𝐗𝐻 . Therefore, 𝐗 is also normal.

– A triangular matrix is normal iff. it is diagonal

Proof. We can prove by induction. Denote the proposition “𝑛 × 𝑛 trian-
gular normal matrices are diagonal” by 𝑇𝑛.
Base case: When 𝑛 = 1, it is obvious that 𝑇1 is true.
Induction Hypothesis: Suppose 𝑇𝑛 is true.
Induction Step: Suppose 𝐀 ∈ ℂ(𝑛+1)×(𝑛+1) is an upper triangular matrix.
We can write

𝐀 =

𝑡11 𝐱𝐻

0 𝐁

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.100)

where 𝐱 ∈ ℂ𝑛, 𝐁 ∈ ℂ𝑛×𝑛. 𝐁 is also an upper triangular normal matrix. It is
easy to see

𝐀𝐻 =

̄𝑡11 0

𝐱 𝐁𝐻

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.101)

It can be seen that

𝐀𝐀𝐻 =

|𝑡11|2 + 𝐱𝐻𝐱 𝐲𝐻

𝐲 𝐁𝐁𝐻

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.102)
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𝐀𝐻𝐀 =

|𝑡11|2 𝐳𝐻

𝐳 𝐱𝐱𝐻 + 𝐁𝐻𝐁

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.103)

Because 𝐀 is normal, we know 𝐀𝐀𝐻 = 𝐀𝐻𝐀. That implies 𝐱𝐻𝐱 = 0 ⇒
𝐱 = 𝟎. Therefore, 𝐲 = 𝐳 = 𝟎. In the lower part, we have 𝐱𝐱𝐻 + 𝐁𝐻𝐁 =
𝐁𝐻𝐁 = 𝐁𝐁𝐻 . Because 𝐁 is normal and upper triangular, by the induction
hypothesis, it is diagonal. As a result, 𝐀 is also diagonal.
By induction, we have proved 𝑇𝑛 for 𝑛 ≥ 1.

• Theorem 5.12 (Normal Matrices)

– Normal matrices 𝐍 are exactly those matrices with 𝐓 = 𝐔−1𝐍𝐔 being
diagonal matrices for some unitary matrices 𝐔.

Proof. Suppose 𝐓 is similar to 𝐍. By Schur’s decomposition, we know
that it is similar to triangular matrix 𝐓. Because 𝐓 is also normal, 𝐓 must
be diagonal. Therefore, 𝐍 is unitarily diagonalizable.

– Normal matrices are exactly those that have a complete set of orthonormal
eigenvectors.

Proof. Because 𝐍 is unitarily diagonalizable, it has a complete set of or-
thonormal eigenvectors.

• A Jordan block is of the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆 1
𝜆 1

𝜆 ⋱
⋱ 1

𝜆

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.104)

where 𝜆 is any number. A Jordan block of ℂ𝑛×𝑛 is called a Jordan block of size
𝑛.
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• A matrix 𝐉 is in Jordan form if it has Jordan blocks on the diagonal. That is,

𝐉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐉1
𝐉2

⋱
𝐉𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.105)

where 𝐉𝑖 are Jordan blocks.
• Theorem 5.13 (Jordan Normal Form)
If a matrix 𝐀 has 𝑠 linearly independent eigenvectors, then it is similar to a
matrix 𝐉 that is in Jordan form, with 𝑠 Jordan blocks on the diagonal. That is,
𝐉 = 𝐌−1𝐀𝐌, or equivalently, 𝐀 = 𝐌𝐉𝐌−1. Each block 𝐉𝑖 is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝑖 1
𝜆𝑖 1

𝜆𝑖 ⋱
⋱ 1

𝜆𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.106)

where 𝜆𝑖 is an eigenvalue.

Remark.

– A square matrix 𝐀 is diagonalizable iff. all Jordan blocks for 𝐀 are of size
1.

– 𝐉 is unique up to a permutation of 𝐉1, … , 𝐉𝑠.
– Finding𝐌 and 𝐉 for 𝐀

For each 𝜆-eigenvector of 𝐯, start with 𝐱1 = 𝐯, then:
∗ Get an 𝐱2 such that (𝐀 − 𝜆𝐈)𝐱2 = 𝐱1
∗ Get an 𝐱3 such that (𝐀 − 𝜆𝐈)𝐱3 = 𝐱2
∗ …
Until some 𝑘 such that (𝐀 − 𝜆𝐈)𝐱𝑘+1 = 𝐱𝑘 has no solution. Then we get a
Jordan block of size 𝑘. All these 𝐱1, … , 𝐱𝑘 would be columns of𝐌.

– A quick way to verify 𝐉 and𝐌 is to check whether 𝐀𝐌 = 𝐌𝐉.
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Example. Find the JCF of

𝐀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0 0 8 8
0 0 0 8 8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.107)

The eigenvalues and eigenvectors of 𝐀 are given by 𝜆1 = 8 (of multiplicity
2), 𝐯1 = (1, 0, 0, 0, 0); 𝜆2 = 0 (of multiplicity 3), 𝐯2 = (0, 1, 0, 0, 0) and
𝐯3 = (0, 0, 1, 0, 0).
For 𝜆1 = 8, let 𝐱1 = 𝐯1. Then, we need to solve (𝐀−8𝐈)𝐱2 = 𝐱1. A solution
is given by 𝐱2 = (0, 18 , 0, 0,

1
8 ). Next, we solve (𝐀 − 8𝐈)𝐱3 = 𝐱2, which has

no solution. Therefore, the size of this Jordan block is 2.
For 𝜆2 = 0, let 𝐱4 = 𝐯2. Then, we need to solve 𝐀𝐱5 = 𝐱4. A solution
is given by 𝐱5 = (0, 0, 0, 18 , 0). Next, we solve 𝐀𝐱6 = 𝐱5, which has no
solution. The size of this Jordan block is 2. Let 𝐱7 = 𝐯3, we need to solve
𝐀𝐱8 = 𝐱7, which has no solution. Therefore, the size of this Jordan block
is 1.
As a result, we can write

𝐌 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1

8 1 0 0
0 0 0 0 1
0 0 0 1

8 0
0 1

8 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.108)

𝐉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 1
8
0 1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.109)

Remark. One can scale the columns of 𝐉. However, the columns corre-
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sponding to the same Jordan block must be scaled by the same factor.

6 Positive Definitive Matrices

• A point (𝑥0, 𝑦0) is a stationary point or a critical point of a differentiable func-
tion 𝐹(𝑥, 𝑦) if

𝜕𝐹
𝜕𝑥 (𝑥0, 𝑦0) = 0 and 𝜕𝐹

𝜕𝑦 (𝑥0, 𝑦0). (6.1)

If (𝑥0, 𝑦0) is a stationary point of 𝐹, then it can be
– A local minimum
– A local maximum
– A saddle point

• Theorem 6.1 (Stationary Point Type of Quadratic Forms)
For a quadratic form 𝑓(𝑥, 𝑦) = 𝑎𝑥2 +2𝑏𝑥𝑦+ 𝑐𝑦2, (0, 0) is a stationary point and
1. It is a minimum if 𝑎 > 0 and 𝑎𝑐 > 𝑏2. In this case, 𝑓 is said to be positive
definite.

2. It is a minimum if 𝑎 < 0 and 𝑎𝑐 > 𝑏2. In this case, 𝑓 is said to be negative
definite.

3. It is a saddle point if 𝑎𝑐 < 𝑏2.
4. If 𝑎𝑐 = 𝑏2, then

(a) 𝑓 is said to be positive semidefinite if 𝑎 > 0.
(b) 𝑓 is said to be negative semidefinite if 𝑎 < 0.

Proof. 𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑎 􏿵𝑥 + 𝑏
𝑎𝑦􏿸

2
+ 􏿵𝑐 − 𝑏2

𝑎 􏿸 𝑦
2.

Remark. If 𝐹 is not a quadratic form, suppose (𝛼, 𝛽) is a stationary point, we
can use Taylor series at this point:

𝐹(𝑥, 𝑦) = 𝐹(𝛼, 𝛽) + 𝐹𝑥(𝛼, 𝛽)(𝑥 − 𝛼) + 𝐹𝑦(𝛼, 𝛽)(𝑦 − 𝛽)

+ 1
2𝐹𝑥𝑥(𝛼, 𝛽)(𝑥 − 𝛼)

2 + 1
2𝐹𝑦𝑦(𝛼, 𝛽)(𝑦 − 𝛼)

2

+ 𝐹𝑥𝑦(𝛼, 𝛽)(𝑥 − 𝛼)(𝑦 − 𝛽) + higher order terms.

(6.2)



55MA51100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang
Section 6: Positive Definitive Matrices

Since (𝛼, 𝛽) is stationary, it is equivalent to
𝐹(𝑥, 𝑦) = 𝐹(𝛼, 𝛽)

+ 1
2𝐹𝑥𝑥(𝛼, 𝛽)(𝑥 − 𝛼)

2 + 1
2𝐹𝑦𝑦(𝛼, 𝛽)(𝑦 − 𝛼)

2

+ 𝐹𝑥𝑦(𝛼, 𝛽)(𝑥 − 𝛼)(𝑦 − 𝛽) + higher order terms.

(6.3)

If at least one of the 𝐹𝑥𝑥(𝛼, 𝛽), 𝐹𝑦𝑦(𝛼, 𝛽) and 𝐹𝑥𝑦(𝛼, 𝛽) is not zero, then the type
of stationary point (𝛼, 𝛽) is the same as the type of stationary point (0, 0) of the
quadratic form

𝑓(𝑥, 𝑦) = 𝐹𝑥𝑥(𝛼, 𝛽)𝑥2 + 2𝐹𝑥𝑦(𝛼, 𝛽)𝑥𝑦 + 𝐹𝑦𝑦(𝛼, 𝛽)𝑦2. (6.4)
1
2𝑓 is called the quadratic part of 𝐹.

• The quadratic form 𝑓(𝑥1, 𝑥2) = 𝑎𝑥21 + 2𝑏𝑥1𝑥2 + 𝑐𝑥22 can be expressed in terms
of multiplication with a symmetric matrix

𝑎𝑥21 + 2𝑏𝑥1𝑥2 + 𝑐𝑥22 = 􏿮𝑥1 𝑥2􏿱􏿋􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏿍
𝐱𝑇

⎡
⎢⎢⎢⎣
𝑎 𝑏
𝑏 𝑐

⎤
⎥⎥⎥⎦

􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝐀

⎡
⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎦

􏿄
𝐱

. (6.5)

Remark. In matrix 𝐀, the value used is 𝑏, which is half of the coefficient of
the cross term in 𝑓(𝑥1, 𝑥2).

• For any 𝑛 × 𝑛 symmetric matrix 𝐀, 𝑓(𝐱) = 𝐱𝑇𝐀𝐱 is a pure quadratic form on
𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛.
– 𝑓 is positive definite if 𝑓(𝑥) > 0 for all 𝐱 ≠ 𝟎.
– 𝑓 is negative definite if 𝑓(𝑥) < 0 for all 𝐱 ≠ 𝟎.
– 𝑓 is positive semidefinite if 𝑓(𝑥) ≥ 0 for all 𝐱 ≠ 𝟎.
– 𝑓 is negative semidefinite if 𝑓(𝑥) ≤ 0 for all 𝐱 ≠ 𝟎.
If 𝑓 is positive definite, 𝐀 is positive definite.

• Theorem 6.2 (Test for Positive Definiteness)
Each of the following tests is a necessary and sufficient condition for the real
symmetric matrix 𝐀 to be positive definite.

(I) 𝐱𝑇𝐀𝐱 > 0 for all nonzero real vector 𝐱.
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(II) All eigenvalues of 𝐀 are greater than zero.
(III) All upper left submatrices 𝐀𝑘 have determinants greater than zero.
(IV) All diagonal entries of 𝐃 in 𝐀 = 𝐋𝐃𝐋𝑇 are positive.
(V) There is a matrix 𝐑 with independent columns such that 𝐀 = 𝐑𝑇𝐑.

Remark.

– (Law of inertia) The number of positive, negative and zero entries in𝚲 and
𝐃 are the same.

– Three ways to find 𝐑:
1. If 𝐀 = 𝐋𝐃𝐋𝑇 , then 𝐑 = √𝐃𝐋𝑇 .
2. If 𝐀 = 𝐐𝚲𝐐𝑇 , then 𝐑 = √𝚲𝐐𝑇 .
3. If 𝐀 = 𝐐𝚲𝐐𝑇 , then 𝐑 = 𝐐√𝚲𝐐𝑇 . Notice that in this case, 𝐑 is sym-

metric.

Proof.

– (I) This is the definition of positive definiteness.

– (V)→(I) If 𝐀 = 𝐑𝑇𝐑, where 𝐑 is real and invertible, we have

𝐱𝑇𝐀𝐱 = (𝐑𝐱)𝑇(𝐑𝐱) ≥ 0. (6.6)
Since 𝐑 has linearly independent columns, 𝐑𝐱 = 𝟎 only has zero solution.
Therefore, for nonzero 𝐱, we have 𝐱𝑇𝐀𝐱 > 0.

– (II)→(V) By Theorem 5.11, we can write 𝐀 = 𝐐𝚲𝐐𝑇 , where 𝐐 is or-
thogonal. Because the eigenvalues of 𝐀 are greater than zero, the diagonal
entries of 𝛌 are greater than zero. Therefore, we can take 𝐑 = √𝚲𝐐.

– (IV)→(V) We can take𝐑 = √𝐃𝐋𝑇 . Because 𝐋 is lower triangular, it must
be invertible.

– (III)→(I) Consider 𝐱𝑘 ∈ ℝ𝑘, where 𝑘 < 𝑛. Construct a vector 𝐱 =
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􏿮𝐱𝑇𝑘 𝟎􏿱
𝑇
∈ ℝ𝑛. Then,

𝐱𝑇𝐀𝐱 = 􏿮𝐱𝑇𝑘 𝟎􏿱
⎡
⎢⎢⎢⎣
𝐀𝑘 ∗
∗ ∗

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
𝐱𝑘
𝟎

⎤
⎥⎥⎥⎦ = 𝐱𝑇𝑘𝐀𝑘𝐱𝑘. (6.7)

That is to say, 𝐀 is positive definite iff. the first 𝑘 submatrices are also
positive definite. Because determinant equals the product of eigenvalues,
we can prove (III)→(I) using (II).

• Theorem 6.3 (Test for Positive Semidefiniteness)
Each of the following tests is a necessary and sufficient condition for the real
symmetric matrix 𝐀 to be positive semidefinite.

(I) 𝐱𝑇𝐀𝐱 ≥ 0 for all nonzero real vector 𝐱.
(II) All eigenvalues of 𝐀 are greater than or equal to zero.
(III) All upper left submatrices 𝐀𝑘 have determinants greater than or equal

to zero.
(IV) All diagonal entries of 𝐃 in 𝐀 = 𝐋𝐃𝐋𝑇 are nonnegative.
(V) There is a matrix 𝐑 such that 𝐀 = 𝐑𝑇𝐑.

• If𝐀 is an 𝑛×𝑛 symmetric positive definite matrix, then 𝐱𝑇𝐀𝐱 is an ellipsoid in
ℝ𝑛. It is an ellipse when 𝑛 = 2.

• Theorem 6.4 (Shape of Ellipsoid)
Suppose𝐀 is positive definite with spectral decomposition𝐀 = 𝐐𝚲𝐐𝑇 . Then
𝐲 = 𝐐𝑇𝐱 simplifies the ellipsoid 𝐱𝑇𝐀𝐱 = 1. More specifically, 𝐲𝑇𝚲𝐲 is the
equation of the simplified ellipsoid. Its axes have lengths 1

√𝜆1
, … , 1

√𝜆𝑛
from

the center, where 𝜆𝑖 are eigenvalues. In the original 𝐱-space, they point along
the eigenvectors of 𝐀.

• Theorem 6.5 (Singular Value Decomposition)
Let𝐀 be an𝑚×𝑙matrix with rank 𝑟. There exist an𝑚×𝑚 orthogonal matrix
𝐔, an 𝑚 × 𝑙 diagonal matrix 𝚺 and an 𝑙 × 𝑙 orthogonal matrix 𝐕 such that

𝐀 = 𝐔𝚺𝐕𝑇 . (6.8)

– The columns of 𝐔 are eigenvectors of 𝐀𝐀𝑇 .
– The columns of 𝐕 are eigenvectors of 𝐀𝑇𝐀.
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– There are 𝑟 nonzero values in the diagonal of 𝚺, and they are the square
roots of the common nonzero eigenvectors of both 𝐀𝐀𝑇 and 𝐀𝑇𝐀.

Remark.

– 𝐀𝐀𝑇 and𝐀𝑇𝐀 share distinct eigenvectors. More concretely, suppose 𝐱 ≠ 𝟎
in an eigenvector of𝐀𝑇𝐀, that is,𝐀𝑇𝐀𝐱 = 𝜆𝐱. Then, we have𝐀𝐀𝑇(𝐀𝐱) =
𝜆(𝐀𝐱). That is, 𝐀𝐱 is an eigenvector of 𝐀𝐀𝑇 with the same eigenvalue.

– Let 𝐔 = 􏿮𝐮1 ⋯𝐮𝑚􏿱, 𝐕 = 􏿮𝐯1 ⋯𝐯𝑙􏿱, and

𝚺 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎1
⋱

𝜎𝑟

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.9)

From 𝐀 = 𝐔𝚺𝐕𝑇 , we have 𝐀𝐕 = 𝐔𝚺. That is,
𝐀𝐯𝑖 = 𝜎𝑖𝐮𝑖 (6.10)

for 𝑖 = 1, 2, … , 𝑟. We have the freedom to choose 𝐮𝑖 and 𝐯𝑖, but 6.10 must
hold.

– A procedure to compute SVD
∗ Compact SVD
1. Compute the eigenvalues and eigenvectors of 𝐀𝑇𝐀.
2. The nonzero eigenvalues and corresponding eigenvectors of𝐀𝑇𝐀 forms

columns of 𝐕 = 􏿮𝐯1 ⋯𝐯𝑟􏿱.
3. Compute the 𝑟 columns of 𝐔 by

𝐮𝑖 =
1
𝜎𝑖
𝐀𝐯𝑖 =

1
√𝜆𝑖

𝐀𝐯𝑖. (6.11)

∗ Full SVD
1. Compute the eigenvalues and eigenvectors of 𝐀𝑇𝐀
2. The nonzero eigenvalues and corresponding eigenvectors of𝐀𝑇𝐀 forms

columns of 𝐕 = 􏿮𝐯1 ⋯𝐯𝑟􏿱.
3. Compute the 𝑟 columns of 𝐔 by 6.11.
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4. Put the corresponding eigenvectors of zero eigenvalues of 𝐀𝑇𝐀 in 𝐕.
5. Put the corresponding eigenvectors of zero eigenvalues of 𝐀𝐀𝑇 in 𝐔.

• Theorem 6.6 (Basis for 4 Fundamental Subspaces)
Let 𝐀 be an 𝑚 × 𝑙 matrix with rank 𝑟. Let 𝐀 = 𝐔𝚺𝐕𝑇 be a singular value
decomposition. Then𝐔 and𝐕 give orthonormal basis for all four fundamental
subspaces:
– First 𝑟 columns of 𝐔 forms a basis for 𝐶(𝐀)
– Last 𝑚 − 𝑟 columns of 𝐔 forms a basis for 𝑁(𝐀𝑇)
– First 𝑟 columns of 𝐕 forms a basis for 𝐶(𝐀𝑇)
– Last 𝑙 − 𝑟 columns of 𝐕 forms a basis for 𝐍(𝐀)

• Theorem 6.7 (Polar Decomposition)
Every real square matrix can be factorized into 𝐀 = 𝐐𝐒, where 𝐐 is orthog-
onal and 𝐒 is symmetric positive semidefinite. If 𝐀 is intertible, then 𝐒 is
symmetric positive definite.

Proof. Use SVD on 𝐀, we have 𝐀 = 𝐔𝚺𝐕𝑇 = 𝐔𝐕𝑇𝐕𝚺𝐕𝑇 . Therefore, we
can take 𝐐 = 𝐔𝐕𝑇 and 𝐒 = 𝐕𝚺𝐕𝑇 . On page 17, we proved the nullspace of
𝐀𝑇𝐀 and 𝐀 are the same. Therefore, if 𝐀 is invertible, 𝐀𝑇𝐀 is also invertible.
Therefore, there would not be any zero on the diagonal of 𝚺. That is, 𝐒 is
positive definite.

Remark. If 𝐀 is invertible, so is 𝐒 = 𝐕𝚺𝐕𝑇 . Then, 𝐐 = 𝐀𝐒−1.
• Let 𝐀 be an 𝑚 × 𝑙 matrix with SVD 𝐀 = 𝐔𝚺𝐕𝑇 . Then its pseudoinverse 𝐀+
is given by 𝐀+ = 𝐕𝚺+𝐔𝑇 , where

𝚺+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎−11
⋱

𝜎−1𝑟

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.12)

The size of 𝚺+ is equal to that of 𝚺𝑇 .
• Theorem 6.8 (Characterization of Pseudoinverse)
Let𝐀 be an𝑚×𝑙matrix. Its pseudoinverse𝐀+ is an 𝑙×𝑚matrix characterized
by the following properties:
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– 𝐀𝐀+𝐀 = 𝐀
– 𝐀+𝐀𝐀+ = 𝐀+

– Both 𝐀+𝐀 and 𝐀𝐀+ are symmetric.
Even though 𝐀 = 𝐔𝚺𝐕𝑇 is not unique, 𝐀+ is unique.

– Properties
∗ If 𝐀 is invertible, then 𝐀+ = 𝐀−1.

Proof. Because 𝐀 is invertible, we know 𝐀𝐀+ = 𝐈. Therefore, 𝐀+ =
𝐀−1 since the inverse of 𝐀 is unique.

∗ (𝐀+)+ = 𝐀
∗ (𝐀𝑇)+ = (𝐀+)𝑇

∗ (𝑐𝐀)+ = 𝑐−1𝐀+ if 𝑐 ≠ 0

• The optimal solution of 𝐀𝐱 = 𝐛 is the minimum length solution of 𝐀𝑇𝐀𝐱 =
𝐀𝑇𝐛. It is called shortest least-squares solution, which is denoted by 𝐱+.

Remark.

– The shortest solution 𝐱+ is unique and in the row space of 𝐀.
– The shortest solution 𝐱+ to 𝐀𝐱 = 𝐛 is 𝐱+ = 𝐀+𝐛.

7 Computation with Matrices

• Condition number and Relative Error
In 𝐀𝐱 = 𝐛, suppose we add some small perturbation 𝛿𝐀 to 𝐱. We want to
analyze how much the product changes with respect to 𝛿𝐀. That is, how big
𝛿𝐛 is in

𝐀(𝐱 + 𝛿𝐱) = 𝐛 + 𝛿𝐛. (7.1)
We model the change by comparing the relative errors ‖𝛿𝐱‖‖𝐱‖ and ‖𝛿𝐛‖

‖𝐛‖ . A good
linear system should guarantee that ‖𝛿𝐱‖‖𝛿𝐱‖ is not large compared to ‖𝛿𝐛‖

‖𝐛‖ .

– Theorem 7.1 (Condition Number for Positive Definite Matrices)
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Let 𝐀 be an 𝑛 × 𝑛 symmetric positive definite matrix. The solution 𝐱 =
𝐀−1𝐛 and the error 𝛿𝐱 = 𝐀−1(𝛿𝐛) always satisfy

‖𝐱‖ ≤ ‖𝐛‖
𝜆max

, (7.2)

‖𝛿𝐱‖ ≤ ‖𝐛‖
𝜆min

, (7.3)

‖𝛿𝐱‖
‖𝐱‖ ≤ 𝜆max

𝜆min
‖𝛿𝐛‖
‖𝐛‖ . (7.4)

The ratio 𝑐 = 𝜆max
𝜆min

is the condition number of a positive definite matrix
𝐀.

Proof. Because 𝐀 is positive definite, it is invertible. Suppose its eigen-
vectors are given by

𝜆−11 ≥ 𝜆−12 ≥ ⋯ ≥ 𝜆−1𝑛 > 0, (7.5)
and the corresponding orthonormal eigenvectors are given by 𝐯1, 𝐯2, … , 𝐯𝑛.
Let 𝛿𝐛 = 𝑐1𝐯1 + 𝑐2𝐯2 +⋯+ 𝑐𝑛𝐯𝑛, then

𝛿𝐱 = 𝐀−1(𝛿𝐛) = 𝑐1𝐀−1𝐯1 + 𝑐2𝐀−1𝐯2 +⋯+ 𝑐𝑛𝐀−1𝐯𝑛 (7.6)
= 𝑐1𝜆−11 𝐯1 + 𝑐2𝜆−12 𝐯2 +⋯+ 𝑐𝑛𝜆−1𝑛 𝐯𝑛. (7.7)

It can be seen that
‖𝛿𝐛‖2 = 𝑐21 + 𝑐22 +⋯+ 𝑐2𝑛, (7.8)
‖𝛿𝐱‖2 = 𝑐21𝜆−21 + 𝑐22𝜆−22 +⋯+ 𝑐2𝑛𝜆−2𝑛 . (7.9)

Therefore, we can write
(𝑐21 + 𝑐22 +⋯+ 𝑐2𝑛)𝜆−2𝑛 ≤ ‖𝛿𝐱‖2 ≤ (𝑐21 + 𝑐22 +⋯+ 𝑐2𝑛)𝜆−21 (7.10)

⇒‖𝛿𝐛‖2𝜆−2𝑛 ≤ ‖𝛿𝐱‖2 ≤ ‖𝛿𝐛‖2𝜆−21 (7.11)
⇒‖𝛿𝐛‖𝜆−1𝑛 ≤ ‖𝛿𝐱‖ ≤ ‖𝛿𝐛‖𝜆−11 . (7.12)

– The norm of matrix 𝐀 is the number ‖𝐀‖ defined by

‖𝐀‖ = max
𝐱≠𝟎

‖𝐀𝐱‖
‖𝐱‖ . (7.13)

Remark.
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∗ The matrix norm bounds the amplifying power of a matrix. That is,
‖𝐀𝐱‖ ≤ ‖𝐀‖ ⋅ ‖𝐱‖.

∗ For positive definite matrix 𝐀, ‖𝐀‖ = 𝜆max.
– The condition number of 𝐀 is

𝑐 =
⎧⎪⎨
⎪⎩
‖𝐀‖ ⋅ ‖𝐀−1‖, if 𝐀 is invertible,
∞, if 𝐀 is singular. (7.14)

– Theorem 7.2 (Condition Number and Relative Error I)
The relative error 𝛿𝐱 from 𝛿𝐛 ∶ 𝐀(𝐱 + 𝛿𝐱) = 𝐛 + 𝛿𝐛 satisfies

‖𝛿𝐱‖
‖𝐱‖ ≤ 𝑐‖𝛿𝐛‖‖𝐛‖ , (7.15)

where 𝑐 is the condition number of 𝐀.
– Theorem 7.3 (Condition Number and Relative Error II)

The relative error 𝛿𝐱 from 𝛿𝐀 ∶ (𝐀 + 𝛿𝐀)(𝐱 + 𝛿𝐱) = 𝐛 satisfies
‖𝛿𝐱‖

‖𝐱 + 𝛿𝐱‖ ≤ 𝑐
‖𝛿𝐀‖
‖𝐀‖ , (7.16)

where 𝑐 is the condition number of 𝐀.
– Theorem 7.4 (Computation of Matrix Norm)

The norm of matrix 𝐀 is given by

‖𝐀‖ = √𝜆max(𝐀𝑇𝐀). (7.17)
The norm of matrix 𝐀−1 is given by

‖𝐀−1‖ = √𝜆min(𝐀𝑇𝐀)−1. (7.18)
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A Concepts
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• inconsistent 1

• singular 1

• Identity matrix 1

• Augmented matrix 1

• Gaussian elimination 1

• Pivot positions 2

• Pivots 2

• inverse 4

• Gaussian-Jordan method 4

• transpose 5

• vector space 5

• subspace 6

• spanning set 6

• column space 6

• nullspace 6

• homogeneous 7

• echelon matrix 7

• row reduced echelon matrix (form) 7

• pivot variables 7

• free variables 7

• linearly independent 7
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• nullity 8

• particular solution 10

• transformation 11

• standard basis 11
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• inner product 15
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• orthonormal basis 15

• orthogonal complement 16

• Projection formula 16

• orthogonal projection 16

• orthogonal projection matrix 17
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• normal equation 20
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• Fourier transform 24

• Fourier coefficients 25

• Fourier matrix 25

• Fast Fourier Transform 26
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• cofactor expansion 27

• adjugate 31

• cofactor matrix 31
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• eigenvector 33

• eigenvalue 33

• eigenspace 33
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• general solution 39
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• stable 41

• neutrally stable 41

• unstable 41

• frequency 42

• decay rate 42

• conjugate transpose 43

• Hermitian 43

• Hermitian matrix 43

• skew-Hermatian 43

• unitary matrix 45
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• similarity transformation 46
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• Jordan block 51
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• negative definite 54
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• pseudoinverse 59

• shortest least-squares solution 60

• norm 61

• condition number 62
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