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Preface

It was not until summer of 2021 that I started to attend lectures in person fre-
quently. The long absence of classroom experience and my shaky foundations
in linear algebra both contributed to the unusually strong interest in the course.
Therefore, I decided to devote a serious amount of my time in compiling the
notes for MA511 (Linear Algebra with Applications) at Purdue University. I
wish the notes to be of high quality that it would be easy to understand when-
ever I need to come back for some forgotten knowledge about linear algebra.
However, I did not have enough time to prove all the theorems listed in the
note, especially towards the final topics of the lecture.

I was really fortunate to have prof. Rongqing Ye teaching this course. He
adapted the materials aptly for students of diverse backgrounds. He was one of
the best instructors I have ever seen at presenting lectures using new technolo-
gies for both on-campus and remote students. He had tremendous passion in
teaching and patience for students. I wish he could continue his career in the
academia, for he must be able to influence many students for years to come.

As the Delta strain emerges, it is unclear when the pandemic will be over.
Purdue may cancel residential classes again in the next semester. The inability
to show up in a classroom somehow reduces my efficiency to study. However,
health is the number one priority, and both us and the Purdue University are
making sacrifices to get through this together.

Pray for all the innocent souls that suffered in this tragic event.

Alan Xiang
July 31, 2021
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1 The Basics

A solution set of a linear system is the set of all solutions (expressed using set
notation: {s1, sy, ...}).

* A linear system is if it has at least 1 solution.
* A linear system is if it has no solution.
* A linear system is it it has no solution or infinitely many solutions.

The number of solutions to a linear system: a linear system can only have no
solution, one solution or infinitely many solutions.

finf o1\

consistent

. of order n, denoted by I,,, is an 1 X n matrix with 1’s on the
diagonal and 0’s elsewhere.

* Elementary row operations:
— Replacement: add to one row the multiple of another: R; — R; + ¢cR;.
Corresponding matrix: setting the i,j entry to cin I (j < i).
— Interchange: interchange two rows: R; — R;.
Corresponding matrix: swapping i-th and j-th column in I.

— Scaling: scale one row by a nonzero scalar: R; — cR;, ¢ # 0.

Corresponding matrix: setting the i,i entry to ¢ in I.

. : a matrix where the coefhicient matrix and biases is juxta-
posed together. For linear system Ax = b, the augmented matrix is

[A b ] (1.1)

. : using row operations to transform the matrix into upper

triangular form.
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Example.

(1.2) (1.3) (1.4)
1 1 1 | 6 Ry, — Ry - Ry 1 1 1 ‘6 R3 — R3 - 2R, 1 1 1 | 6
1 2 2111 01 115 01 115
2 3 4'3 2 3 -4'3 01 -6'-9

(1.5) (1.6)

Ry—Rs-2R; [ 1 1 1,6 | Rg—R,-Ry| 1 1 1,6
- o1 1.5 |7 |01 15
01 -6'-9 00 7'14
. : the first nonzero entries in each row of an upper triangular
system.
. : The nonzero numbers at pivot positions of an upper triangular system.

» Theorem 1.1 (Number of Solutions to a Linear System)

— A linear system is consistent iff. the last column of its augmented matrix
does not have a pivot position.

— If'a Linear system is consistent:

« It has exactly one solution if all columns in its coefhicient matrix have
pivot positions.

* It has infinitely many solutions if some columns in its coeflicient matrix
have no pivot position.

For the linear system Ax = b:
 If each row of A has a pivot position, then Ax = b is consistent for all b.

 If each column of A has a pivot position, then Ax = b has at most 1
solution.

* Matrix multiplication

— Matrix-vector multiplication: let matrix A = [Aq, Ay, .., A;] € R™
where A, is the i-th column of A. Let vector v = [v1, 05, ..., 7] € R!.Then
the matrix-vector multiplication Av is given by

Av = UlAl + UzAz |=enelee ot UIA[. (17)
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— Matrix-matrix multiplication: let matrix A € R"™ et matrix B = [By, By, ...,

R™>P. Then the matrix-matrix multiplication AB is given by

AB = [AB;,ABy, ..., AB,] € R (1.8)

~ |Remark |

# The a;; entry of AB is the inner product of i-th row of A and j-th column
of B.

s The j-th column of AB is the product of A and j-th column of B. Each
column of AB is a linear combination of columns in A.

s The i-th row of AB is the product of i-th row of A and B. Each row of
AB is a linear combination of rows in B.

— Properties
* (Associativity) (AB)C = A(BC) = ABC
* (Distributivity) A(B + C) = AB + AC, (B+ C)D = BD + CD
* In general, AB # BA
 In general, cancellation law does not work. That is, AB = AC = B = C.
x If AB = 0, we cannot conclude A =0 or B = 0.

* Triangular factorization

— Any matrix A can be written as PA = LU, where Pisa permutation matrix,
L is a lower triangular matrix, and U is an upper triangular matrix. This
factorization can be acquired from the Gaussian elimination process.

Example.
(1.9) (1.10) (1.11)
0o 1 1 R; <R, 1 0 1 R3 — Ry —2R; - 3R, 1 0 1
1 0 0 1 0 1 1
2 3 4 2 3 4 0 0 -1
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Therefore, the P, L, U matrices are given by

010 100 10 1
P=[1 0 o[,L=[0 1 o[,Uu={0 1 1 (1.12)
001 2 31 00 -1

Notice how the coefhicients of L can be acquired directly from the Gaus-
sian elimination process. Notice that this is only possible when each row is
replaced by the rows above it.

— This factorization can also be written as PA = LDV, where DV = U. D is
a diagonal matrix whose diagonal values are taken from U’s. V is an upper
triangular matrix with each pivot standardized to 1.

— If A is invertible, then LDV is uniquely determined by A.

— For linear system Ax = b, we know that it is equivalent to LUx = b. There-
fore, we can first solve Lc = b and then solve Ux = c.

Inverse

— The of A, denoted by A1 is a matrix such that AA™1 = 1.
— If A is invertible, then A1 is unique.
— If A is invertible, then Ax = b has a solution x = A~ 1b.

If Ax = 0 has a nonzero solution, then it is not invertible.

— Properties
x (AB)"l = B1A1
« (A 1=A

s In general, (A +B)™' # A~l + B!

— The inverse of a matrix can be found with the

Example.
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2 -1 0,1 0 0]R—R+3R[2 =1 0,1 0 0
-1 2 110 10| |0 3 11310
0 -1 2'0 0 1 0 -1 2'0 0 1
(1.15) (1.16)
Rs — Ry + 2R, -1 0,1 0 0]R —Ry+2Rg[2 -1 0,1 0 0
A O N 3 1,1 - - 47 3 3 3 3
> =11 = 1 0 0 E 0 - = Z
0 4 % 2 0 0 4 % % 1
3.3 3 508 B
(1.17) (1.18)
L 13 1 '3 1 1
Rl”Rl‘FERZ 2.0 0,; 1 7 divide by pivot 15..0.0fq 7 > 1
—_—— 3 % 3 % B —— e % %
3 01 = = 1 0 1 01 = 1 =
2oait fd 0011 14
3.3 3 4 2 4
* Transpose
— The of A, denoted by AT, is a matrix such that (AT)l-j = (A)ji-
— Properties
« (AB)T = BTAT
« (AT = A
Ty-1 _ -1\T
# (A7) =(AT)

*

(A+B)T = AT +BT

e Symmetric matrix

A matrix A is symmetric if AT = A.

Symmetric matrices are square matrices.

For any matrix A, AAT and AT A are symmetric.

If a symmetric matrix A is factorized into A = LDV, then V = LT.

2 Vector Spaces

e A is an nonempty set V of objects called vectors, on which two op-
erations are defined: addition and multiplication by scalars. The set V subjects
to the ten axioms below, which must hold true for all vectors u, v, w € V and
for all scalars ¢, d € R:
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u+veV

ut+v=v+u

(u+v)+w=u+(v+w)

There is a zero vector 0 € V such that 0 + u = u

For each u € V, there is a vector —u € V such thatu + (-u) =0
Yc,cueV

clu+v)=cu+cv

c(du) = (cd)u

lu=u

0 ® N o kWL Db e

of a vector space is a nonempty set H satisfying:

— Vx,y € H,x+y € H (closed under addition)

— Vx e H,ce R, cx € H (closed under scalar multiplication)

— If we can prove a subspace satisfies the two conditions, it is automatically a
vector space.

— There are two trivial subspaces for any vector space V: H = V and H = {0}.

Let vy, vy, ..., Vi be vectors in V. The of vy, Vy, ..., v is the set of
all linear combinations of them. That is,

span{vy, vy, ..., Vg} = {c1vy, CoVp, ..., CkVE, V¢ € R} (2.1)

A spanning set is a subspace.

The of A, denoted by C(A), is defined to be the spanning set of
its columns.

— Ax = b is consistent iff. b € C(A).
The of A, denoted by N(A), is the solution set of Ax = 0.
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* A linear system is if b = 0. It is inhomogeneous if b # 0.

— The solution set of Ax = 0is N(A).

— A homogeneous system Ax = 0 is always consistent.
* An upper triangular matrix U is an if:

1. The pivots are the first nonzero entries in their rows.
2. Below each pivot are all zeros.

3. Each pivot lies to the right of the pivot in the row above.

It is further called a (RREF) if it further
satisfies:

1. Each pivot is 1.
2. Each pivot is the only nonzero entry in its column.

» Theorem 2.1 (Transformation to Echelon Matrix)

Any matrix A can be transformed into an echelon matrix U by a sequence of
elementary row operations.

— Such echelon matrix U is called an echelon form of A.

— There are infinitely many echelon forms of a nonzero matrix, but there is
only a unique reduced echelon form.

— Variables on the pivot columns are called . Variables on non-
pivot columns are called

» Asetofvectors vy, vy, ..., Vi are ifthe linear system x7vq +
XpVy + -+ + x; vk = 0 only has the trivial solution vy = vp = --- = v = 0.
» Theorem 2.2 (Linear Independence)

The following statements are equivalent. That is, they are either all true or all
false.

— The columns of A are linearly independent.
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- N(A) = {0}

— Each column of A has a pivot position. If A is a square matrix, then also A
is invertible.

* A of a vector space V is a set of vectors B = {vy, vy, ..., vi} such that:

1. B islinearly independent
2. V =span(B)

— In general, the columns of I, forms the standard basis of IR".

— A basis is a . That is, any linearly independent
set in V' can be extended to a basis, by adding more vectors if necessary.

— A basis is a . That is, any spanning set in V can be

reduced to a basis, by discarding vectors if necessary.

» Theorem 2.3 (Basis and Invertibility)
If an n X n matrix A is intertible, then its columns form a basis for IR".

* Any two basis of a vector space V must have the same number of vectors. This
number is called the of V.

* The four fundamental subspaces
Let A be an m X | matrix. The four fundamental subspaces associated to A
are:

1. The column space of A, C(A), which is the spanning set of the columns of
A. The of A is dim C(A).

2. The nullspace of A, N(A), which is the solution set of Ax = 0. The
of A is dim N(A).
3. The row space of A, which is the column space of AT. It is the spanning
set of rows of A.
4. The left nullspace of A, which is the nullspace of AT It is the solution set
of xA = 0.

» Theorem 2.4 (Finding Basis of Column Space)
The pivot columns of A form a basis for C(A).
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Example.

2.2) (2.3) 2.4)

0 1 2 3 4R, -R,-R, [0 1 2 3 4 R—Rs—R, [0 2 3 4

01 2 4 6 000 1 2 0 0 0 2

000 1 2 000 1 2 0 0 0 0 0

Therefore, a basis of the column space is
1| |3
1/,]4|}. (2.5)
of |1

Notice that the vectors must be taken from the original matrix, instead of the upper
triangular matrix after row operations.

» Theorem 2.5 (Finding Basis of Nullspace)

The vectors associated to the free variables of a parametric form of solutions
to Ax = 0 form a basis of N(A).

Example.

First of all, devise the parametric form of solutions, express the pivot vari-

ables in terms of free variables. Then, find the vectors associated with the free
variables.

(2:6) (2.7)
1 2 3]R—R+2R 2 &
2 -4 -6 0 0 0

It can be seen that xq is a pivot variable; x,, x3 are free variables. Therefore,
we have

X1 —2xy + —3x3 =2 -3

X| = Xy =xp|1|[+x3]0]. (2.8)

X3 X3 0 1

It can be seen that a basis for N(A) is
-2( |-3
11{,[0]. (2.9)
1
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Example.

Now, we have a inhomogeneous system.

(2.10) (2.11)

: Ry = Ry =3R4 :
1 0 -1 2, -5]R>R-R [ 0O -1 25
31 2 412 01 5 -2113
1 1 4 0'38 01 5 2'13
(2.12)
R34’R3_R2 0 -1 2 \_5

It can be seen that x1, x; are pivot variables, x3, x4 are free variables. Therefore,
we can write

X1 -5+ X3 — 2x4 -5 1 -2
13 - 5x3 +2 13 -5 2
e B AR T | 2 (2.13)
X3 X3 0 1 0
X4 X4 0 0 1

It can be seen that the solution can be written as x = x;, +x;,, where x,, € N(A).
X, is known as the

Dimensionality, nullity, rank
Suppose A € R"™¥,

— rank A = dim C(A) = number of pivot columns

— null A = dim N(A) = number of non-pivot columns
— rank A < min(m, )

— rank A + null A =/

— rank A = rank AT

— If A is square (m = [), then rank A = m & A is invertible
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— In general, null A # null AT. The equality holds only when A is a square
matrix.
Theorem 2.6 (Finding Basis of Row space)

The elementary row operations do not alter the row space.Therefore, the
nonzero rows of an echelon form can serve as a basis for the row space.

Example.

(2.14) (2.15)
1 2 3]R—-R+2Rip 5 3
[—2 4 —4] [o 0 2]
Therefore, a basis for the row space is
{1 2 3].Jo o 2]}. (2.16)

The geometry of four fundamental subspaces

— N(A) is perpendicular to C(AT)

Proof.| Suppose ATy = b for some y, that is, b € C(AT); let v e N(A),
that is, Av = 0. It can be seen that bTv = (ATy) v = yT Av = 0.

— N(AT) is perpendicular to C(A)

Proof.| Suppose Ay = b for some y, that is, b € C(A); let v € N(AT), that
is, ATv = 0. It can be seen that bTv = (Ay)Tv =y’ ATv = 0.

A T from R/ to R™ is a rule that assigns to each x € R/ a vector
T(x) € R™.

Let A € R"™ ! Then T(x) = Ax is a transformation.
A transformation T : R! — R™ is linear if:

1. Tx+y)=T(x)+ T(y)

2. T(cx) = cT(x)

Remark.| Matrix transformations are linear.

The for R is {eq, ey, ..., e!}, which are columns of I;. If x =
(x1,%9, ..., x7), then x = x1e1 + xpep + -+ + x€)
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» Theorem 2.7 (Linear Transformation Matrix)

Let T : R > R™ be a linear transformation. Then there is a matrix A, called
the of T, such that T(x) = Ax. Moreover,

A=[T(e)) T(ep) - T(ep)]. (2.17)

Example.| Suppose T : R> — R is a linear transformation given by

1 0

By

Derive the standard matrix A of T.
Because T is a linear transformation, we can write T(x) = Ax. Therefore, we

have
10
2 1
Al ]: 01 (2.19)
3 2
2 0
It can be seen that
IR ) -
2 1112 1 2 1
A=Al=A =lo 1 : (2.20)
3 2113 2 5 0 3 2

» Theorem 2.8 (Composition of Linear Transformations)
Suppose T : R! — R? is linear with standard matrix A, and G : R? — R™ is
linear with standard matrix B. Then the standard matrix for Go T : R/ e
R” -5 R™ is BA.

* Let B = {by, by, ..., b,} be a basis for a vector space V. Then any vector vin V

can be uniquely written as v = x1bq +x,by + - +x,b,,. [V]g = [x1,%p, .., x,,]"
is called the B- of v.

Example.| Let P, = {all polynomials of degree < 2}. LetL = {t+1,¢-1,t*~1}.
Prove that L is a basis for IP,. Derive the L-coordinate for 1 + 2t + 32.
A polynomial in P, can be written as ¢ + bt + at?. Its coordinate under the
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standard basis is [c, b, a]. Putting the three coordinate vectors of L in one
matrix, we have

(2.21) (2.22)
1 -1 1] g, =Ry —R, -1 0
1 1 ol " |o 1
0 0 1 0 0

Because there are three pivots, we know that the vectors in L are linearly in-
dependent. Because the dimension of IP; is 3, we know that L is a basis of IP,.
Denote the L-coordinate of 1 + 2t + 32 by x. We know that

1 -1 -1 1
1 1 0|x=[2]. (2.23)
0 0 1 3
Therefore, we have
1 -1 4] 1] [3
x=|1 1 ol [2|=]x]. (2.24)
0 0 1 3 3

Example.| Let P, = f{all polynomials of degree <2}. Let W = {p € P, :
p(1) = p’(1) = 0}. Show that W is a subspace of IP; and find a basis for W.
Suppose p1,p2 € W. It can be seen that (p; + p2)(1) = p1(1) + po(1) = 0,
(p1 +r2)’@) = p1(1) + p5(1) = O thatis, p; + p, € W; Vc € R, cpy(1) = 0,
cp1(1) = 0, that is, cpy € W. As a result, W is a subspace of IP,. A polynomial
in P, can be written as ¢ + bt + at?>. Now, p(1) = p’(1) is equivalent to the
condition

a+b+c=0 (2.25)
2a+b=0 '
The corresponding matrix of this homogeneous system is
111
. (2.26)
210

Finding a basis of the homogeneous system is essentially finding a basis for the
nullspace of the matrix. Therefore, we have
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(2.27) (2.28) (2.29) (2.30)
1 1 1]R>R-2R1p 1 JR2R+RBp 1 ]R2R+R 0 -1
2 1 0 0 -1 -2 0 -1 -2 0 -2

There is only one free variable c. It can be seen that

a c 1
bl =|-2c|=c|-2]. (2.31)
c c 1

Therefore, a basis for W is 1 — 2t + t2. (Remember to write the basis in polynomial

form)

Example.| Let T : P, — IP,. Defined by T(p) = p(0)t + p(1)t?. Let B be the
standard basis of IP,. Find a B-matrix A to represent T. Let L be {t -1, +
1,t? —1}. Find an L-matrix representation of A.

A polynomial in P, can be written as ¢ + bt + at?. Therefore, we have T(p) =
ct + (a+ b+ c)t?. As a result, the B-matrix of A is given by

00O
00 1. (2.32)
111
The basis of L is given by
-1 1 -1
c=|1 1 of. (2.33)
0 0 1

Suppose vector y is in L-coordinate. In order to apply A to y in L-coordinate,
we need to transform y back to B-coordinate first, apply A, and then transform
the result back to L-coordinate. Therefore, the corresponding transform ma-
trix is

11 -] o o o][-1 1 1
cl'lAc=(1 1 o [0 0 1|]|/1 1 O (2.34)
0 0 1 11 1110 0 1
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0 -1 %
=lg: -1+ 2f. (2.35)
0 2 0
3 Orthogonality
An on a vector space V is a function that, to each pair of vectors

u and v in V, associates a real number < u, v > that satisfies:
1. {(u,v) ={(v,u)

2. (u+v,w)=(u,w)+(v,w)

3. {cu,v) = c{u,v)

4. (q,u)>0and(u,u) =0 u=0

Only vector spaces with inner products have geometry.
Geometry on the inner product space
— The length of v € V is |[v]| = V{v, V)

— Let the angle between v and w be 6, then (v, w) = ||v]| [[w]|| cos O

Two vectors v and w are if (v, w) = 0.

Theorem 3.1 (Orthogonality and Linear Independence)

Let vq,Vy, ..., Vx be mutually orthogonal nonzero vectors, then they are lin-
early independent.

Proof.| Apply the dot product of v; to both sides of c1 vy + covp + ..., g vg = 0,

we get civl-Tvi = 0. Because v;’s are nonzero, it must be that ¢; = 0.

If the vectors in a basis of V are mutually orthogonal, it is called an
. If each vector in the orthogonal matrix has unit length, it is called an

Let V be a vector space with an inner product. Two subspaces G and H of V
are orthogonal (writtenas G 1L V) ifVge G,Vh € H, (g, h) =0.

Theorem 3.2 (Orthogonality of Matrix Subspaces)
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Let A € R™!
— C(AT) 1 N(A)
— C(A) L N(AT)

Let V be a vector with an inner product. Given a subspace H of V, the space
of all vectors orthogonal to H is called of H. It is
denoted by H-L.

— dimH +dimH! =dimV
- (HY:=H

Example.| Let W be a subspace in R3 defined by x + 2y — 3z = 0. Find a basis
for W,

Let A=[1 2 3] then W = N(A). Wl = N(A)L = C(AT). A basis for the
row space is [1 2 3], which is the basis for W-.

Example.| Ax = b is consistent when b € C(A). Thatis, b | N(AT).

Projection onto a vector: the projection of vector y onto a vector u is given by

T
(u,y)u _uu'y

PIOJ, Y She = (3.1)
/

: suppose B = {uy, up, ..., ug} is an orthogonal basis for W.

The of vector y onto W is given by
proj,, y = proj, y + proj, ¥ + .+ proj, - (3.2)
The standard matrix of the projection operation P is given by
T T T
uju uu uu
P=—L1+—22 4.+ K (3.3)
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It works only when B is an orthogonal basis.

 Theorem 3.3 (Projection, Generic)

Let W be a subspace of R” with a basis given by columns of a matrix A. Then
the onto W is A(ATA) AT,

Proof.| Suppose B = {vq,Vy, ..., Vi} is a basis for W. Let A = [vl,vz, ,vk],
we know W = C(A). We can write y = ¥ + z, where § € C(A), z € C(A)L =
N(AT). It can be seen that Ax, ¥ = Ax; ATz = 0. We need to find x.

y=Ax+z (3.4)
= Aly=ATAx+ATz (3.5)
= ATy=ATAx (3.6)
= x = (ATA) ATy (3.7)
That is,
y=AATA)1ATy. (3.8)

If the columns of A are linearly independent, then ATA isinvertible.
Proof: ATAx=0= xTATAx = 0= (Ax)TAx=0= ||AX|? =0 = Ax = 0.
That is to say, the nullspace of A and ATA are the same.

* The of y onto W, denoted by orthyy y, is given by
orthyy y =y — proj,, y. (3.9)

— Proofoforthyyy L W:letz = y—proj, y=y- A(ATA) ATy, Multiply
AT to both sides, we have ATz = ATy - ATA(ATA)'ATy = 0. That is,
ze N(AT) =z | C(A) = z e C(A)L.

— The distance between y and W is given by ||orthyy yl|.
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Example.| Let A be given by

1 1 2
A=|-1 0 -1 (3.10)
M =5 =

T
and W = C(A). Find the projection of y = [l 2 3] on W. Determine the
distance between y and W.

Step 1: find a basis for W

(3.11) (3.12) (3.13)
o dlle 224 Rrespe apn [1e ele o2:l et nn | e 1 o 2
[—1 0 -1 2oty 1 1 St 0 1]
0 -1 -1 0 -1 -1 0 0 0
Therefore, a basis for W is given by
1 1
v=|-1 0]. (3.14)
0 -1
Step 2: Find the projection matrix
P=V(VIiv)1vT (3.15)
Do a1 o
=1-1 0 3.16
A T
0 -1 .
1 2 =1 =l
= 3 -1 2 -1f. (3.17)
-1 -1 2
Step 3: Compute projection
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2 -1
szyz—-q 2 (3.18)
E

Step 4: Compute orthogonal complement and distance

N

orthwy=y-y=|2]. (3.19)

N

The distance is [lorthyy y|| = 24/3.

Theorem 3.4 (Gram-Schmidt Process)

Given a basis {x1,xy, ..., xp} for a nonzero subspace W of R", define

= (3.20)
Vy =Xy — p]fojVl Xo (3.21)
V3 = X3 — p1rojVl X3 — projVZ X3 (3.22)

: (3.23)
vy =Xy - projVl Xy — projV2 Xp— o= projvp_1 Xy, (3.24)

then {vy, vy, .., v,} is an orthogonal basis for W.

— span{vy, Vy, ..., Vg} = span{xq, Xp, ..., X} for 1 <k < p.

A" Vv Vi
- {—1, —c } is an orthonormal basis for W.
[vill” [lvall " vl

If 2 matrix Q has orthonormal columns, it is called an orthogonal matrix. It

can be seen that QTQ =1, that is, Q7! = Q7.

When Q is a square matrix, we have QQT =1 as well.
Theorem 3.5 (QR Factorization)
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Let A be an m X [ matrix of rank [. That is, [ < m, and columns of A are

linearly independent. Then, there exists an m X | matrix Q and an / X | matrix
R such that A = QR satistying:

1. Q € R"™!is an orthogonal matrix

2. R = QTA € R™ is an upper triangular matrix with positive diagonal
entries

— We can find Q by applying Gram-Schmidt process to the columns of A.

— Q and R are unique.

A solution of Ax = b is X such that
b — AX|| < ||b — Ax|| (3.25)
for all x. The length |[b — AX|| is called the of the approxi-

mation of Ax = b.

Finding a least square solution for Ax = b

— Idea: find the projection of b in C(A), which is denoted by b. Solve Ax = b
instead.

Ax =AATA) AT (3.26)
=ATAx = ATA(ATA)TATD (3.27)
=>ATAx = ATb (3.28)

— Theorem 3.6 (Normal Equation)

ATAx = ATb is the of Ax = b, which is always consistent.
The solutions to ATAx = ATb are the least-square solutions to Ax = b.

Theorem 3.7 (Properties of Least Squares)

Let A be an m X [ matrix. The following statements are equivalent:
— Ax = b has an unique least-square solution for each b € R".

— The columns of A are linearly independent.

— The matrix AT A is invertible.
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When these statements are true, the least-square solution X is given by
% = (ATA)1ATD. (3.29)

¢ Least squares and QR factorization: let A be an m X | matrix with linearly
independent columns. A has QR factorization A = QR. The least square
solution of Ax = b is given by x = R"1Q”b.

Remark.| In practice, an easier way to get the solution is to solve the upper
triangular system RX = QTb.

e Least squares and polynomial approximation

Example.| Let V = C[0,1] and (f, ) = 1;1 f(t)g(t)dt be an inner product on
V. Let W = span{py, pp, p3}, where

p1=1 (3.30)
py=2t-1 (3.31)
p3 = 1212, (3.32)
Find an orthogonal basis of W.
It can be seen that:
n=mn=1 (3.33)
92 = p2 ~ proj, p2 (3.34)
<q1/ p2>
= 3.35
e (3.35)
f 2t —1dt
=@2t-1)-2—F——1 (3.36)
[ 14t
=2t-1. (3.37)
93 = 43 — proj, p3 —Pproj, ps (3.38)

q1.p3)  {q2,P3)
Guan " (G

= (12t3) - (3.39)
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1 1
12%dt 2t —1)12£%dt
= (122) - 1; ; o1l = %; ( ) (2t -1) (3.40)
‘gldt L(Zﬁéh@t—lﬂt
= (121%) -4 - 6(2t - 1) = 121> - 12t + 2. (3.41)

Example.| Let V = P4 with inner product given by evaluation at -2, 1, 0, 1,
2. Let W = IP; be a subspace of V. Find 4, b, c such that a + bt + ct? is closest
to5— %t4.

We can write our problem as

a
1
[1t 2]p =5-tt. (3.42)
A b

——

X

The normal equation is ATAx = ATb, which is given by

a1 an a2 ]la <L5—%#>
1) (Lt G2 [|b[=] 559 |, (3.43)
(1) (2,1 (2 2)]]c <t2,5-§t4>

where
1] [-2]  [4 3]
1 1 1 .
1=|1[,t=]0 J2=0,5—§#: 5. (3.44)
1 1 1 2
2
1 | 2 | 4] -3

After the computation of inner product, we get

5 0 10][a 8
0 10 of|b|=| o0 |. (3.45)
10 0 34f|c| [-15
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It can be seen that a least square solution is

_ -1
5 0 10 8
0 10 O 0
_10 0 34 -15
r 17 1 211
5 U 77 3
0 T 0 0f=]10
Lo LJI|-15 3t
7 14 14

V. Find a + bx that is closest to x° in V.

We can write our problem as

1Ay

b

The normal equation is ATAx = ATb, which is given by

1,1y 1,x)
(x,1) {(x,x)

That is,

Therefore, we have

;

* Complex number

N

NlR— =

1

dx f xdx ‘

al . [(1, x5)
JENEERN
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(3.47)

Example.| Let V = C[0,1] and (f, ) = K f(x)g(x)dx be an inner product on

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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- A can be written as z = a + bi, where a,b € R, and i is the
imaginary number unit.

— Notations: suppose z = a + bi
% R(z) = a, the real part
% 3(z) = b, the imaginary part
% Z = a — bi, the complex conjugate of z

% C: the set of all complex numbers

lz| = Va? + 12, the absolute value; |22 = zz

*

b
* arg(z) = arctan -
— Polar form: a complex number can be written as z = a + bi = rcos¢ +

irsin @, where r = |z, ¢ = arg(z).

* Given a sequence of numbers yg, y1, ..., Y,—1. Suppose these numbers are sam-
pled from a function f(t) att = 0, %, %, P n—;l The of f(t)
is given by

Et) = cg+ 182t 45622 oo 4 ¢y g2 (3.53)

Only 71 terms are enough. Consider the kn + [ term, where k >
1,0 <1 < n. We have

eZm’-(kn+l)t — eZni-knteZm'-lt — eZni-lt. (3_54)

That is, terms beyond 1 will be equal to the first 1 terms.

— Derivation of Discrete Fourier Transform

. . . 1 . ..
In order to acquire the coeflicients ck, consider F (;), which is given by

.1 o 2 . n-1
1 2711~ = 27111 = 2mi- =
Fl=]|=co+cre n+cpe” n+--4+c_qe n . (3.55)
n SN—— SN—— S——
w w2 wh-1
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] 1 -1. .
Putting t = 0, s nT into the above equation:

Cop+Cq +Cy + e+ 0 =1Yo
co+wey  +wly  +--+wl, =g
cg+w?c; +wlcy,  + - +w? Ve, =y, (3.56)

= — _1)2
co +w" ey + W Doy + o + D¢, =y, g,

2mi
where w = e » . The system above can be written in matrix form as:

1 1 1 1 [[e]| [w]

1 w w? il 1 Y1

1 w? wt e WD =y | (3.57)

1 wn_l wZ(Tl—l) s0c w(n_l)z Cr-1 Yn—1

———
F ¢ y

That is, the ¢ can be found by multiplying the inverse
of F and the function values y (c = F-ly).

— Theorem 3.8 (Properties of the Fourier Matrix)

2mi

Letw = e n and F be the 1 X n Fourier matrix. Then @ = w™! and FF = nl.
That is,

1 1 1
1 1 w_l w_z 000 w_(n_l)
Fl=—F=-[1 w3 w2 (3.58)
n n|.
1 w_(n_l) w—Z(H—l) w_(n_l)z
_ z
Proof.| It can be shown that for complex number z, z 1= L Because
lw| = 1, we know @ = w™!. Here are some facts:
2ni :
« w'=1:w=[en | =2 =1.
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s« For any non-negative integer j, w' =1.
% Let Ay =1+ w +w? + --- + w1V then A, = nifj = 0; A, = 0ifj is
an positive integer.
It is clear that A, = n whenj = 0. Whenj > 0, A, is the sum of
a geometric series with common ratio w/. Therefore, we have A, =
1-(w/)"
LE)Y
1-w!
Since F is a symmetric matrix, its rows and columns are the same. Therefore,
the k-th row of F is given by

[1 wk w2 ... w(”_l)k]. (3.59)
The I-th column of F is given by

T
[1 ot 2t ee s g ESLE ] ; (3.60)
Therefore, the (k,[) element of FF is
1+ whw™ + ww2 4 ... 4 @=Dkgy=(n=1)I (3.61)
=1+ w®D 4+ g2ED 4 .. 4 =D (3.62)
n, k=1
= . 3.63
1 09
It can be seen that FF = nl.
(FFT)
27 .
Assume the Fourier matrix is of nxXn, where n = 2m. Letw, = e ,F = [w],f 1,
2%kj A kj
¢ = (co, €1, ,Cy_1). It can be seen that w;,” = [e2n | =em = wy. Our

goal is to compute y = Fc efficiently. Consider the j-th component of y:

j j(n—1
y] =Cp+ ZUInCl 9 600 a3 Zl]ln( )Cn—l (364)
n-1 m—=1 m—1
ik 2kj (2k+1)j
= Z wh Ck = Z Wy ]C2k + 2 Wy ]c2k+1 (3.65)
k=0 k=0 k=0
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m-1 ki . om=1 ki
= Z wniczk +uwl, 2 wniCZkH (3.66)
k:0 k:o

yj i
One can see that y’ comes from the smaller sub-problem. Therefore, we can
derive an efficient algorithm as follows:

Step 1: Separate ¢ into even and odd numbered components:

 =(co, 2, e, Cy2) (3.67)
” =(cq,¢3, - ,Cy_1) (3.68)
Step 2: Letm = g compute:
y =F,c (3.69)
y” = F,,c” (3.70)

Step 3: Merge y’ and y” to gety’, forj =0,1,..,m —1:
yj = y]f + ny]f’ (3.71)

\m
2mkj
m+ e ;
Because y4j = y]f + Wy y]’-’ ,also wyy! = (e 2m ) = ¢ = -1, we have

Vi = Yi =~ Why] - (3.72)

4 Determinants

e Let A be an 7 X1 matrix. Let Aj € R"-DX("-1) be the submatrix of A, which

is formed by deleting the i-th row and j-th column of A. The (i, j)- of
A, denoted by ¢y;, is given by
Cij = (—1)i+j det A1] (4.1)
* Let A = [4] be an n X n matrix with n > 2. The of A, denoted
by det A, is defined by
detA = a11C11 + a12C12 + -+ + a1,C1 (42)
= a1 det A —app det Ap+ -+ (—1)n+1111n det Ay, (43)
This is also known as the of A on the first row.
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— det A can be computed by cofactor expansion on any arbitrary row/column.

— The time complexity of cofactor expansion is O(n!).

» Theorem 4.1 (Determinant of Triangular Matrix)
If A is a triangular matrix, then det A is the product of the diagonal entries of
A.
» Theorem 4.2 (Determinant and Row Operations)
Let A be an n X n matrix.
Ri—)Ri+CR]‘
1. Replacement does not change determinants. [f A ————— B, thendetB =
det A.

Ri<—>R'
2. Interchange changes the signs of determinants. If A — . B, thendetB =

—det A.

Rl‘—> R[‘
3. Scaling scales determinants. If A EAGAR B, then det B = cdet A.

Proof.

3. It can be easily proved using cofactor expansion.

2. Suppose we interchange i-th and i + 1-th row of A, which results in B. If
we expand on the i-th row of B, we have

n
detB = )] b;i(-1)"" det By (4.4)
k=1
n . .
= Z aij(—l)”]*l det Aij = —detA. (4.5)
k=1

Now we need to interchange i-th and j-th row. Suppose i < j, we can
interchange (i,i+1), (i+1,i42), ..., (j—1, /) rows until the i-th row becomes
the j-th row. Now, we have done j — i interchanges, and j-th row becomes
the j —1-th row. We keep interchanging (j—1,7-2),(j-2,j-3), ..., (i+1,1)
rows until the j —1-th row becomes the i-th row. In total, we did 2(j —7) -1
interchanges. Therefore, detB = —det A.
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1. The determinant of B is given by

detB = Y (aj + cap)(-1)"*F det Ay (4.6)
k=1

n n
= z ﬂik(—l)i+k det Ajp+c 2 ll]'k(—l)i+k det Aj (4.7)
k=1 k=1

n
= det A + ¢ ), aj(-1)""" det Ay. (4.8)
k=1
To compute the second term in the sum, we can construct a matrix C as
tollows: let C = A, then let the i-th row of C be equal to the j-th row of
C. Obviously, C is a matrix with two identical rows. If we interchange
the two identical rows of C to get C’, we know that C = C’. Given that
detC = —det C’ = —det C, we know det C = 0. As a result, det B = det C.

det(cA) = ¢" det A

Thoughts.

We can also use replacement and scaling to prove interchange. Use B to denote
the matrix after row operations. Denote the initial row i and row j by R} and
R]’- , respectively. Interchanging is equivalent to the following sequence row
operations:

Step | Row Operation | Value of R; | Value of R; | Value of det B
1 R; = R; + R R! + R]’- R]’- det A
2 | R—>-2R | R+K 2R/ ~2detA
3 | RoR+R; | RI+R/ | RI-R —2det A
4 | Ri>R—R; 2R R~ R! 2 detA
5 R; — oR; R/ R, - R/ —detA
6 | R —R+R R! R! ~detA

* Properties of Determinant

— A square matrix A is invertible iff. det A # 0.
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Proof.| Use row operations to reduce the matrix to triangular form; mul-

tiply the values on the diagonal.
det(AB) = det A det B

Proof.| If A is not invertible, we need to prove AB is not invertible. Sup-
pose B is not invertible, then Jy # 0, By = ABy = 0. Therefore, AB is
not invertible. Suppose B is invertible, because A is not invertible, Ix # 0,

= 0. We can find y such that By = x = y = B 'x. In this case,
ABy = 0,y # 0. Therefore, we can conclude that AB is not invertible. In
this case, it is easy to see that det(AB) = det A det B.

If A is invertible, we can write A as the product of a series of elementary
row operation matrices

A =EE, | EL (4.9)
Since each elementary row operation will introduce a constant scale factor
to the result of the determinant, we can write

det A = det(E E;_1 - E1) = exer_q -+ €1. (4.10)
It can be seen that
det AB = det(E E;_1 --- E{B) = eje4_1 -+ e det B. (4.11)
Therefore, we know that det(AB) = det A det B.

det AT = detA

Proof.| Suppose A € R™". We can use mathematical induction to prove
that det AT = det A for n > 1.

Base Case: When 11 = 1,2, it is obvious that det AT = det A.

Induction Hypothesis: Suppose det AT = det A for n > 1.

Induction Step: We need to prove det BT = det B, where B € R(*+Dx(1+1),

The cofactor expansion of the first row of BT is given by

n+1
detBT = 2191( —1)"* det B, (4.12)
j=1
n+1 :
= Y b (1) det By; = detB. (4.13)
j=1
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By mathematical induction, we can conclude that det AT = detAforn > 1.

1
detA

Proof.| detI = det(AA™!) = det Adet Al =1.

— detAl =

— det(B1AB) = detA

Theorem 4.3 (Cramer's Rule)
Let A be an n X n invertible matrix. For any b € IR”, the unique solution of
Ax = b has entries given by

_ detAi(b)

X; = ’
detA
where A;(b) denotes the matrix A with the i-th column replaced by b.

(4.14)

Proof.| Denote the i-th column of A by a;, it can be seen that

Lx) =[ e - eq1 x - e |

AL(x) =[ Ae; - Ae ;1 Ax -+ Ae, ] (4.15)
:[ a]_ cee ai—l b e an
= Ab).

That is, det(AILi(x)) = detA;(b) = detAdetI;(x) = detA;(b). Consider
the value detI;(x), if we use cofactor expansion across the i-th column, the
cofactors corresponding to elements other than x; will be 0, because there will
be an all zero row in the submatrix; the cofactor corresponding to x; will be
(-1)*idetI,; = 1. As a result, we know that det(AI;i(x)) = x;. That is,
(det A)x; = det A;(b).

Theorem 4.4 (Determinant and Inverse)

Let A be an n X 1 matrix. The of A is given by adj A = CT, where
the C is given by
Cll. €12 . Sy
C=|.. . -~ .| (4.16)
Cnl Cn2 " Cun
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If A is invertible, its inverse is given by

1 1
Al = detAadez detACT (4.17)

Proof.| Consider the matrix A adj A = ACT, whose (i, j) entry is given by

n
AC}:]- = Z lliijk. (4.18)
k=1

When i = j, it is the cofactor expansion of det A. Therefore, the diagonal
elements of ACT equal to det A. When i # j, it is equivalent to the cofactor
expansion of A’, which is matrix A with the i-th row equal to the j-th row.
It can be seen that det A’ = 0. That is,
det A
det A
ACT = a8 = (det A)L (4.19)
det A
It can b hat A~ =T which fmplies ———+= A-1
t can be seen that A , whic lmplCSm— .
» Theorem 4.5 (Volume After Linear Transformation)
Let T : R" — R" be a linear transformation with standard matrix A. Then
vol(T(v)) = | det A| vol(v).
e The determined by n vectors vy, vy, ..., v, is the subset

P ={a1xq +axxy + --- +a,x,, | 0 <aq,ay,...a, <1}. (4.20)

» Theorem 4.6 (Determinant and Volume)
Let vy, Vy, ..., v, be n vectors in IR”, let P be the parallelpiped determined by

these vectors, and let A = [vl Vp e vn]. The volume of P is given by
vol(P) = |det Al.

Proof. | A proof for the two theorems above can be found in https: //textbooks .

math.gatech.edu/ila/determinants-volumes.html.
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5 Eigenvalues and Eigenvectors

e Let A be an 17 X n matrix. An of A is a vector v such that
- v#0
— Av = Av for some scalar A

A scalar A is called an if Ax = Ax has a nontrivial solution; such an
x is called an eigenvector corresponding to A (A-eigenvector).

Remark.| Eigenvectors cannot be zero, eigenvalues can be zero.

* Let A be an eigenvalue of A. The of A corresponding to A is the
set of all solutions to Ax = Ax, or (A — AI)x = 0. That is, the A-eigenspace is
N(A - AL.

* Finding eigenvalues
We know that

Ax = Ax has a nontrivial solution
= (A — AI)x = 0 has a nontrivial solution
= A — Al is not invertible
= det(A - AI) = 0.

To find eigenvalues, we only need to solve det(A — AI) = 0, which is known
as the

* The sum of eigenvalues of A equals to the sum of diagonal entries A. The
sum of diagonal entries is known as the of A, which is denoted by tr A.

* The product of eigenvalues of A equals to the determinant of A.

» Theorem 5.1 (Eigenvalues of Triangular Matrices)

The eigenvalues of a triangular matrix are the entries on the main diagonal.

Example.| Compute the eigenvalues and corresponding eigenvectors for

A= [_1 3]. (5.1)

2 0

Step 1: Find all eigenvalues by the characteristic equation.
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Step 2:

-1-A4 3

det(A — AI) = ‘ 5

‘:A2+/\—6:0. (5.2)

It can be seen that A = -3, A, = 2.

Find a basis for N(A — AI) for each A.
For Ay = -3, the matrix is
2 3
[ ] )

2. 3
Transforming it to RREF:
(5.4) (5.5) i (5.6)

Cm R, — iR
2 3| RezRe-Ripp 5 17270 1] 2
2 9 0 0 0 0

It can be seen that x; is a free variable. Therefore, we have

. 3
, Y
=xy| 2{.
|x2] 2[1

T
We can scale it to get the A4 eigenvector: [—3 2] .

-3 3
23] ”

(5.7)

For A, = 2, the matrix is

Transforming it to RREF:

(5.9) ,  (5.10) NCET))
R, — Ry + 2R Ry iR

3 3|2” 2t g 1T 75 1

2 2 0 0 0 o0

It can be seen that x5 is a free variable. Therefore, we have

X1 1
-] o

T
The A; eigenvector is [1 1] .
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» Theorem 5.2 (Linear Independence of Eigenvectors)

If vy, ..., v, are eigenvectors corresponding to distinct eigenvalues Ay, ..., A, of
an 1 X n matrix A. Then the set {vy, ..., v,} is linearly independent.

Proof.| We can prove it by contradiction. Suppose {vy, ..., v,} is linearly de-

pendent. That is, there exists some nonzero cy, ..., ¢, such that cyvy +...+¢,v, =
0.

Without loss of generality, assume ¢; # 0, and A; is the biggest of all eigen-
vectors. Because Afv = Aky, if we multiply AF to the equation above, we
have

cl/\’{vl + C2/\I§V2 St=eleei St CrAgSVr =0 (513)
k k
A A
C1vV1 + ¢ (—2) Vo + -+ ¢ (_r) v, = 0. (514)
M M
Because k is arbitrary, on the left hand side, we can get
k k
lim C1V1 + Cp e Vo + -+ C, ﬁ V, =C1Vq. (515)
k—o00 /\1 /\1

Because c¢;vy # 0, we have reached a contradiction. Therefore, {vy, ..., v,}
must be linearly independent.
* Properties of Eigenvalues/Eigenvectors

Suppose A is an eigenvalue of A € R”; v is the corresponding eigenvector of
A

A has at most 7 distinct eigenvalues

A is an eigenvalue of AT

v is a A¥-eigenvector of AK (Akv = Afv)

v is a cA-eigenvector of cA (cAv = c(Av) = (cA)v)

— If A is invertible, v is a A~1-eigenvector of A™! (A”!Av = A 1Av =
Alv =21y

Example.| If —1,1,2 are eigenvalues of A. Find eigenvalues of A — A + 1.

It can be seen that

(A2-A+Dv=A2v-Av+Iv=2A2v-Av+v=(A2-A+1)v. (5.16)
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For A = -1,1,2, we know that the eigenvalues of A% — A +1are given by
3,1,3.

An 71 X n matrix A is to another 7 X  matrix B if there is an invertible
n X n matrix P such that A = PBP1.

A square matrix A is said to be diagonalizable if A is similar to a diagonal
matrix. That s, if A = PDP~! for some invertible matrix P and some diagonal
matrix D.

If we can find A = PDP, then AF = (PDP~1)k = PD*P.

Theorem 5.3 (Diagonalization)

An nXn matrix A is diagonalizable iff. A has n linearly independent eigenvec-
tors. Moreover, if {vy, vy, ..., v, } is a set of linearly independent eigenvectors
with corresponding eigenvalues A1, Ay, ..., A, then we can take

P=[v1 Vp e vn] (5.17)

D= . . (5.18)

An

Proof.| From A = PDP~! we know AP = PD. Looking at each matrix
column by column, we have
[AVl AVZ AVn] = [/\1V1 /\2V2 /\nvn]. (519)

It can be seen that columns of P are eigenvectors; the diagonal of D is made
up of corresponding eigenvalues.

Remark.| P and D are not unique.

Theorem 5.4 (Algebraic and Geometric Multiplicity)

Let A be an n X n matrix whose distinct eigenvalues are:

A1 of multiplicity m4
A, of multiplicity m,
Then A is diagonalizable iff. both of the following statements are true:
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1. dim(A;-eigenspace) = m;, 1 =1,2,..,p

2. my+my+-+m,=n

dim(A;-eigenspace) is known as the of A;; m; is known
as the of A;. It holds that
1 < dim(A;-eigenspace) < m;. (5.20)

Remark.| An n X n matrix is diagonalizable if it has n distinct eigenvalues.

Differential Equations
Suppose we want to solve a linear system of differential equations

du
— = Au, (5.21)
where
uy(t)
Whuﬁ) (5.22)
)

is a vector of smooth functions, and A € R™". Consider the simple case
u’(t) = au(t), we can write

u’(t) = au(t) (5.23)
du
= — = qu(t 5.24
= = au(t (5.24)
du
= — =qgdt (5.25)
u
du
zf7=IMt (5.26)
= Inlul=at+c (5.27)
= |u| = ee™ (5.28)
= 4= /et (5.29)
where ¢’ is a constant.
— Let A be an 1 X n matrix. The of A is an 11 X 1 matrix
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defined by

A? A"
A _ =
=I+A+ 5 + e+ T (5.30)

It can be seen that the definition is derived from Maclaurin series.
— If D is diagonal with D = diag(A4, ..., A,,), then eP = diag(e'1, ..., etn).
— If A is diagonalizable, that is, A = PDP~ 1 we know A¥ = PA*P~1, Then,

(o] Lyn o0
we have e = 370 T2 L - P(En " )P—l — peDPL,
— Properties
% eAseAt A(s+t)

% e® # ¢B because AB # BA in general

x eAleAl = T
d oAt At
* dt( ) Ae

. . d
From 5.29 and the properties above, we know that the solution to d—ltl = Au

is u(f) = eAc, where c is a vector of constants.
— Theorem 5.5 (Solution to First Order Differential Equations)

. d .
Let A be an 7 X 1 matrix. Then == = Au has the solution

dt
u(t) = eAtu(0). (5.31)
If A is diagonalizable and A = PDP~!, then
u(t) = PeP'P~1u(0), (5.32)

where columns of P are the eigenvectors of A, and the diagonal entries of
D are the corresponding eigenvalues.

When A is diagonalizable, if we set ¢ = P~1u(0), we can write

oMt
u(t) = [vl vy e vn] (5.33)
= ety + cpeety, + oo + ¢ et (5.34)
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Therefore, when A is diagonalizable, finding the general solution to Z—l; =

Au is essentially the same as finding the eigenvalues and eigenvectors of A.

Example.| Find the solutions to the differential equation

=1 20 o5

The eigenvalues and eigenvectors are givenby A1 = -1, vy = (1,1); A, = =3,

vy = (1, -1), respectively. The are given by
1 1
et and ¢3! . (5.36)
1 =1
A is given by
t 1 1
X0 _ cret| | + cpe3 : (5.37)
y(t) 1 -1
Suppose we are given u(0) = (2,1), we need to solve
c +c Ll 2 (5.38)
1] '
fora . This is essentially solving the linear system
1 1 2
U —eh (5.39)
1 -1|le,| |1
It can be seen that
- . -1
1 g
|C1 - ] | ] (5.40)
Cy ] | -1 1

(5.41)

Il
r
NN = /=
L Nor =
NI =
=
—
— N
e

Il
—
NN W
—_

Steps of solving Z—l; = Au when A is diagonalizable:
1. Find all eigenvalues A1, A5, ..., A, of A

2. Find a basis for each N(A — AI) to get the eigenvectors vy, Vo, ...,V
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3. Write the general solution using 5.34; the ¢;’s are left in the result as
unknowns

4. If given an initial condition (e.g., u(0) = 1), solve the equation ¢;v; +
-+ ¢,v, =u(0) for ¢y, ..., ¢,

— The complex case: when real matrix A has complex eigenvalues

s If vis a A-eigenvector of a real matrix A, then ¥ is a A-eigenvector of A.

Proof.| Because A is real, we know AV = Av = Av = 1v.

« Consider a pair of complex eigenvalues and eigenvectors A = a + bi, v

and A = a - bi, v. For the fundamental solution e*v, suppose we can

decompose v = R(v) + iJ(v), then we have

eMv = @R (V) + iJ(v)] (5.42)
= % [R(v) + iS(V)] (5.43)
= ¢ {(cos bt + isinbt)[R(@) + i3(@)]} (5.44)

= e% {cos btR(v) — sin btI(v) + i [cos btI(v) + sin biR(v)]}. (5.45)

Meanwhile, we can write

eMy = @R (v) - i3(0)] (5.46)
= e M R(v) - iS(v)] (5.47)
= ¢ {(cos bt — i sin bt)[R(v) — i3()]} (5.48)

= e {cos btR(v) — sin btI(v) — i [cos btI(v) + sin btR(v)]}. (5.49)
It can be seen that e}v and v are complex conjugates.

« For now, the solutions for u has complex numbers. If we split u(t) =
f(t) + ig(f), where f and g are real functions. It can be seen that

du
E = Au (5.50)
= /() + ig/(t) = A[f(t) + ig(t)] (5.51)
= £(1) + ig/ () = Af(t) + iAg(t) (5.52)
du

Since f and g are real, it can be seen that they are both solutions to
Au.

dt

% Because e*v and eMv are complex conjugates, their real parts are the

same; their absolute values of their imaginary parts are identical. There-
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fore, we only need the real part and imaginary part of e*v, and they are
the two real solutions to the differential equations.

Example.| Find a real solution to

X' (f) = [;é —_2;] x(#). (5.53)

The eigenvalues are given by A; = =2 + 51, A, = =2 — 5i. Because they
are complex conjugates, we only need to compute the real solution for

A1. The Aj-eigenvector is (i, 2). Decomposing ve, we have
i e(—2+5i)t — i e—Ztei(St) (554)
2 |2
= ;] e2t(cos 5t + i sin 5t) (5.55)
_ i(cos 5t + i‘si.n 5t) o2t (5.56)
| 2(cos 5t + isin 5t)
L {78 g2t 4 cc?s - g2 (5.57)
|2 cos 5t 2sin 5¢
Therefore, the real solution is given by
—sin 5t cos 5t
t) = 2 2 5.58
X0 = [2 cos St] £ [2 sin 5tl ‘ (5-58)

— Theorem 5.6 (Stability of First Order Differential Equations)

The differential equation Z—? = Auis

* ifall R(A;) <0

* if all R(A;) < 0 and at least one R(A;) =0
* ifany R(A;) > 0

Here, A;’s are the eigenvalues of A.

— Second order equations

. d? . .
Consider FE = Au, where A only has negative eigenvalues. We take func-
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tions of the form u(t) = ¢"“!v, it can be seen that

42
—e
. dtz .
If we let Ae'™tv = —w?e™ty, we have
Av = —wPv. (5.60)
If we get an eigenvalue A and corresponding eigenvector v for A, we have
to solutions

ity = (iw)2e™ty = —welvty. (5.59)

eV-Aty and e V-Aty, (5.61)

In this case, w = V—A is called the connected to the A.

Theorem 5.7 (Solution to Second Order Differential Equations)
Let A be an n X n matrix. If A has negative eigenvalues A4, ..., A, let wj =

a2 .
N —/\j, then d_t;l = Au has the solution

u(t) = (cleiwlt + dle‘iwlt) e (cneiwnt + dne‘iwnt) v,  (5.62)
where v; is a A;-eigenvector. The general real solution is given by

u(t) = (a1 coswyt + by sinwqt)vy + -+ + (a,, cosw,,t + b, sinw, t)v,,.
(5.63)

Example.| Solve

du [-2 1
W: 1 9 u. (564)

The eigenvalues and eigenvectors are Ay = -1, vy = (1,1); A, = -3, v, =
(1,-1). The frequencies are wy = V-A1 =1, wp = V-1, = \/§

The general solution has the form

1
u(t) = (a1 cost + by sint) [l

+ (ay cos V3t + by sin V3t) [_11] . (5.65)

Suppose the initial conditions are given by u(0) = (1,0), u’(0) = (0,0).
Here, we can interpret u as the position, u’ as velocity, and u” as accelera-

MAS1100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang 4 2
Section 5: Eigenvalues and Eigenvectors



tion. It can be seen that

u’(t) = (—aq sint + by cost) [

+ (—\/gaz sin V3t + b2\/§ cos \/gt) [_11] .

(5.66)

1 1
- a5
1

|+ V3b, l—lll _ [Ol (5.68)

0

1
1
We can write the following equations:

1

[/'lll

+ as

by

1
It can be seen that aq = a, = 2 by =by, =0.

e The of A, denoted by AH s equal to AT, AH is called “A

2

If A is a real matrix, then A = AT,

* Inner product on C": let x and y be two complex vectors, then their inner
product is xy.

* An n X n complex matrix A is a ifAH = A; A is
if AH = —A.

Remark.| A real symmetric matrix is Hermitian.

* Properties of Hermitian matrix
Let A be an 1 X n Hermitian matrix, that is, A = A.

— For any x € C", x Ax is a real number.

Proof.| (xTAx)H = xHAH (xH)H = xH Ax. Therefore, x'' Ax must be real.

— Every eigenvalue of A is real.

Proof.| Suppose v is a A-eigenvector of A. We have

vlHAv = vH v = Aviv. (5.69)
That is,
vi Av
A= ——. (5.70)
A\
MAS1100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang 43

Section 5: Eigenvalues and Eigenvectors



Since both the numerator and denominator are real, we know A is real.

— Let vy, v, be two eigenvectors of A corresponding to distinct eigenvalues
A1 and A,. Thenvy 1 vy.

Proof.

Avilvy = (Avy)vy = (Avy)v, = v ATy, (5.71)
= V{IAVZ = V{I(A2V2) = /lzvllqu. (5.72)

Because the eigenvalues of A are real, we know A; = A;. Therefore, we
can write (A — Az)v?vz = 0. Since A1 — A, # 0, it must be that Vllqu = 0.

A real symmetric matrix A can be orthogonally diagonalized.
That is, A = QAQT for some orthogonal matrix Q and diagonal matrix A.

Example.| Find an orthogonal diagonalization of

3 -2 4
A=|-2 6 2|. (5.73)
4 2 3

It can be seen that for Ay = 7, v = (-1,2,0), vo = (1,0,1); for A, = -2,
vy = (=2,-1,2). Because A is symmetric, we know v; 1 v3, v, L vs.
However, within the same eigenspace, vi L vp. Therefore, we need to
apply Gram-Schmidt process to find a diagonal basis for A;-eigenspace. It
can be seen that

-1
W1 =V = 2 v (574)
0
1 -1
v{ Vo 1
wy =vy———vVvy =|0|+22 (5.75)
ViVy 5
1 0
4
g 4
=1z|=12|- (5.76)
1 5
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Normalizing each vector:

1
\5
W1 2
Tl I SHE
| O
[_4
W»o \/51_5
Twall |55 )
| Va5
-2
V3 :f’
us ||V3|| 23 5 (5.79)
3
Therefore, we have
1 4 2
V5 Va5 3
2 2 1
Q= B YB3 (5.80)
g 2 Z
i Va5 3
7
A=| 7 | (5.81)
i -2

* AnnXn complex matrix with orthonormal columns is called a
That is, UHU = L

Remark.| An orthogonal real matrix is also unitary.

Example.| If K is a skew-Hermitian matrix, then Kisa unitary matrix. Be-

H H
cause (eK) eK = eK7eK = 7KK — 1

* Properties of Unitary Matrices
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Let U be unitary, that is, UTU = 1.
— (Ux)"(Uy) = x"y

— The eigenvalues of U is of the form e/

Proof. | Let v be a A-eigenvector of U. It can be seen that vi'v = (Uv)H(Uv) =
(Av)H(Av) = |A|2vv. Therefore, we have |A| = 1.

Two 1 X n matrices are if there is an invertible matrix P such that
B = P"1AP.

Let P be an 11 X 1 invertible matrix. The transformation A — P~1AP is called
a
Theorem 5.8 (Eigenvalues of Similar Matrices)

Suppose B = P~ LAP is a matrix similar to A. Then A and B have the same

eigenvalues. Moreover, if v is a A-eigenvector of A, then Plvisa A-eigenvector
of B.

Proof.| det(A — AI) = det[P~}(A — AI)P] = det(P~TAP — AI).
BP lv = (P"TAP)P 1V = P 1Av = P71 (Av) = A(P 1v).

— If A and B have the same eigenvalues, they are not necessarily similar.

— Ifan n X n matrix A has n distinct eigenvalues, then any matrix B has the
same eigenvalues is similar to A.

Proof.| If A, B both has n distinct eigenvalues, they are diagonalizable.

We can write A = PIlDPl, B = PngPz. By theorem 5.2, we know
that both P; and P, are invertible. Let X = P§1P1. Then X" 1BX =
(P7'P,)P;'DP,(P,'P;) = P{'DP; = A. Therefore, A and B are similar.

Theorem 5.9 (Similarity and Linear Transformation)

Let B = {bq,by,..,b,} be a basis of R”. The B-matrix of a linear trans-
formation T : R" — R” is similar to its standard matrix A. Moreover, if
P=[b; b, - b, thenB=PlAP.

Theorem 5.10 (Similarity to Triangular Matrix)
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For any n X n matrix A, there is a unitary matrix U such that UTAU =

UMAU = T is an upper triangular matrix. This is also known as

Example.| Find a unitary matrix U so that U"AU = T is a triangular matrix.

(1) We need to find an eigenvector of A. In this case, we know A; =1, and

the corresponding v; = (1,-1,1).

(2) Find a linearly independent set containing v. In this case, we can take

{Vr €1, eZ}-

(3) Apply Gram-Schmidt process to get a orthogonal basis. It can be seen that

W1 = Vy,
2
Ir
. Wi€ 2 ?
Wy = €1 — T Wi = 5
3
W1 e W%eZ
W3 =€ — —= oy e
1W1 W2W2
0 0
1
= % — |1].
= 1
2
(4) Normalize vectors to get U.
1 2
- = @
NG
voo|l-L L 1
LTI V|
1 1 1
i Ve e
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(5.85)
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(5) Compute Ty = UIlAU = UTAU. It can be seen that

TR
Vis Ve
T o] -2 L= (5.87)
1= 2 \/ﬁ o
3 5)
0 -7 2

The lower block is not a triangular matrix yet. We need to repeat the
process for this block.

(6) Let
RESEE S
B=| 2 VI (5.88)
7% Tz
Repeat the steps (1)-(5) to get U, and Tj. In this case, we have
L 8
2
U=| 4 \/11_2 (5.89)
[Vi2 2
TRy
T, = Viz |, (5.90)
0 2

It can be seen that Ty is triangular.

(7) We need to combine U; and U, to get the final U.

A =U;T{U;! (5.91)
o2 2
Vis Vel
=U, o U; (5.92)
0
T
Vs Ve
=Ui|o , U (5.93)
o UToU;
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24 20
tool | % l|[too
=1, [0 0 —2 ——=21lo Uk (5.94)
Vi2 -1
o Uzfly o 5|l U2
Therefore, we have
100
U=U;]|0 (5.95)
o Up
11
B L% L
"% % | (3-96)
ERRY PR
Ve
It can be seen that
02 2
H
T=Ul!AU=|0 -2 -—|. 5.97
0 -2 = (5.97)
0 0 -2

» Theorem 5.11 (Spectral Theorem)
Every real symmetric matrix A can be diagonalized by an orthogonal matrix
Q. Every Hermitian matrix can be diagonalized by a unitary matrix U. That
1s,

(rea) Q"'TAQ=A or A=QAQT (5.98)
(complex) U'AU=A or A =UAU". (5.99)
The columns of Q (or U) are the orthonormal eigenvectors of A.
* The matrix N is it NN = NFN.

Example.| Hermitian matrices, skew-Hermitian matrices, and unitary matri-

ces are normal.

* Properties of Normal Matrices

— Normality is preserved under unitary similarity.
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Proof.| Suppose N is similar to X, that is, X = UHNU. It can be seen that
xHX = UHNHUUPNU = UPNHNU = UPNNHU = UPNUUPNAU =
XXH . Therefore, X is also normal.

— A triangular matrix is normal iff. it is diagonal

Proof.| We can prove by induction. Denote the proposition “n X 1 trian-

gular normal matrices are diagonal” by T,,.

Base case: When n =1, it is obvious that T; is true.

Induction Hypothesis: Suppose T, is true.

Induction Step: Suppose A € C*DX(+D) i5 an upper triangular matrix.
We can write

t11 XH

A= . (5.100)
0 B

where x € C", B € C"". B is also an upper triangular normal matrix. It is
easy to see

AH = : (5.101)
X BH
It can be seen that
|11/ + xTx y"
AAT = , (5.102)
y BBH
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|t11/? zH

AHA = , (5.103)
z xx1 + BHB

Because A is normal, we know AA” = AHA. That implies xHx = 0 =
x = 0. Therefore, y = z = 0. In the lower part, we have xxI + BHB =
BHB = BB!. Because B is normal and upper triangular, by the induction
hypothesis, it is diagonal. As a result, A is also diagonal.

By induction, we have proved T, for n > 1.
» Theorem 5.12 (Normal Matrices)

— Normal matrices N are exactly those matrices with T = U~!NU being
diagonal matrices for some unitary matrices U.

Proof.| Suppose T is similar to N. By Schur’s decomposition, we know

that it is similar to triangular matrix T. Because T is also normal, T must
be diagonal. Therefore, N is unitarily diagonalizable.

— Normal matrices are exactly those that have a complete set of orthonormal
eigenvectors.

Proof.| Because N is unitarily diagonalizable, it has a complete set of or-

thonormal eigenvectors.

e A is of the form

, (5.104)
1
A

where A is any number. A_]orcian block of (E”x;1 is called a Jordan block of size
n.

MAS1100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang 5 ]
Section 5: Eigenvalues and Eigenvectors



* A matrix J is in if it has Jordan blocks on the diagonal. That is,

J1
j=| 2 N (5.105)

Js

where J; are Jordan blocks.

 Theorem 5.13 (Jordan Normal Form)

If a matrix A has s linearly independent eigenvectors, then it is similar to a
matrix J that is in Jordan form, with s Jordan blocks on the diagonal. That is,
J = M 1AM, or equivalently, A = MJM~!. Each block J; is

e e (5.106)

where A; is an eigenvalue.

— A square matrix A is diagonalizable iff. all Jordan blocks for A are of size
1.

— J is unique up to a permutation of J4, ..., Js.

— Finding M and J for A

For each A-eigenvector of v, start with x; = v, then:
% Get an xp such that (A - AI)x, = xq
* Get an x3 such that (A — A)x3 = xp

Until some k such that (A — AI)xz,1 = X; has no solution. Then we get a
Jordan block of size k. All these xj, ..., X would be columns of M.

— A quick way to verify J and M is to check whether AM = MJ.
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Example.| Find the JCF of

[8 0 0 8 8
00088
A=|0 0 0 0 Of. (5.107)
00000
0 0 00 8

The eigenvalues and eigenvectors of A are given by A1 = 8 (of multiplicity
2), vi = (1,0,0,0,0); Ay = 0 (of multiplicity 3), v, = (0,1,0,0,0) and
vs = (0,0,1,0,0).

For A1 = 8, let x; = vy. Then, we need to solve (A —8I)x; = x;. A solution
is given by x, = (0, %, 0,0, %) Next, we solve (A — 8I)x3 = x, which has
no solution. Therefore, the size of this Jordan block is 2.

For Ay = 0, let x4 = vy. Then, we need to solve Axs = x4. A solution
is given by x5 = (0,0,0, %,O). Next, we solve Axg = x5, which has no
solution. The size of this Jordan block is 2. Let x; = v3, we need to solve
Axg = xy, which has no solution. Therefore, the size of this Jordan block
is 1.

As a result, we can write

1 0 0 0 O]
02100
M=[0 000 1], (5.108)
000 50
0 000
8 1
8
J= 01 . (5.109)
0
0

Remark.| One can scale the columns of J. However, the columns corre-

MAS1100: Linear Algebra and Its Applications (Notes)—Ziyue “Alan” Xiang 53
Section 5: Eigenvalues and Eigenvectors



sponding to the same Jordan block must be scaled by the same factor.

6 Positive Definitive Matrices

* A point (xg, o) is a ora of a differentiable func-
tion F(x,y) if
JdF JdF
5, (0,Y0) =0 and &—y(xozyo)- (6.1)
If (xo, yo) is a stationary point of F, then it can be
— A local minimum
— A local maximum
— A saddle point

» Theorem 6.1 (Stationary Point Type of Quadratic Forms)
For a f(x,y) = ax? + 2bxy +cy?, (0,0) is a stationary point and

1. Itis a minimum if @ > 0 and ac > b2. In this case, f is said to be
2. It is a minimum if 2 < 0 and ac > b2. In this case, f is said to be

3. It is a saddle point if ac < b?.

4, If ac = b2, then
(a) f issaid to be ifa>0.
(b) f issaid to be ifa <0.

2
Proof.| f(x,y) = ax® + 2bxy +cy? = a (x + Zy) + (c - %) 2.

Remark.| If F is not a quadratic form, suppose (a, ) is a stationary point, we

can use Taylor series at this point:
F(x/y) = P(O(,ﬁ) + Fx(arﬁ)(x - CV) + Fy(arﬁ)(y - ﬁ)

1 1
+ 2Pl fx - @ + Fyy(a, By - ) (62
+ Fyy(a, B)(x — a)(y — ) + higher order terms.
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Since (a, p) is stationary, it is equivalent to
F(x,y) = F(o, B)

1 1
+ 5 Faala, B = @ + SFyy e, By - 0 )
+ Fyy(a, f)(x —a)(y — B) + higher order terms.

If at least one of the Fy.(a, B), Fyy (, B) and Fy, (e, ) is not zero, then the type
of stationary point (a, f) is the same as the type of stationary point (0, 0) of the
quadratic form

f@,y) = Fyy(a, Bx2 + 2Fy (@, B)xy + Fyy(ct, By (6.4)
% f is called the of F.

The quadratic form f(x1,x,) = ax% + 2bx1xy + cx% can be expressed in terms
of multiplication with a symmetric matrix

ax? + 2bx1xy + cx5 = [x1 x2] [Z b] [xll. (6.5)
C| | X2

xT —
A X

In matrix A, the value used is b, which is half of the coefhicient of

the cross term in f(xq, xp).

For any 1 X 1 symmetric matrix A, f(x) = x' Ax is a on
X = (xq, ..., x,) € R".

— fis it f(x) > 0 for all x # 0.

— fis it f(x) <0 for all x # 0.

— fis it f(x) > 0 for all x # 0.

— fis if f(x) <0 forall x # 0.

If f is positive definite, A is positive definite.
Theorem 6.2 (Test for Positive Definiteness)

Each of the following tests is a necessary and sufficient condition for the real
symmetric matrix A to be positive definite.

(I) x' Ax > 0 for all nonzero real vector x.
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(IT) All eigenvalues of A are greater than zero.
(ITI) All upper left submatrices Ay have determinants greater than zero.
(IV) All diagonal entries of D in A = LDLT are positive.

(V) There is a matrix R with independent columns such that A = RTR.

— ( ) The number of positive, negative and zero entries in A and
D are the same.

— Three ways to find R:
1. IfA = LDL”, then R = VDL".
2. IfA = QAQT, then R = VAQT.
3. If A = QAQT, then R = QVAQT. Notice that in this case, R is sym-

metric.

Proof.

— | (I) | This is the definition of positive definiteness.

— | (V)>(I) | If A = RTR, where R is real and invertible, we have

x'Ax = (Rx)T(Rx) > 0. (6.6)
Since R has linearly independent columns, Rx = 0 only has zero solution.
Therefore, for nonzero x, we have x! Ax > 0.

— | (I)—(V) | By Theorem 5.11, we can write A = QAQ’, where Q is or-
thogonal. Because the eigenvalues of A are greater than zero, the diagonal
entries of A are greater than zero. Therefore, we can take R = \/KQ.

— |(IV)— (V)| We can take R = VDL Because L is lower triangular, it must
be invertible.

— | (II)—(I) | Consider x; € RX, where k < n. Construct a vector X =
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[xlf O]T € R". Then,
* *

xI Ax = [x,{ 0] [Ak *} l)g(] = xlekxk. (6.7)

That is to say, A is positive definite iff. the first k submatrices are also
positive definite. Because determinant equals the product of eigenvalues,

we can prove | (III)—(I) | using (II).

» Theorem 6.3 (Test for Positive Semidefiniteness)
Each of the following tests is a necessary and sufficient condition for the real
symmetric matrix A to be positive semidefinite.

() x" Ax > 0 for all nonzero real vector x.
(IT) All eigenvalues of A are greater than or equal to zero.

(ITI) All upper left submatrices Ay have determinants greater than or equal
to zero.

(IV) All diagonal entries of D in A = LDLT are nonnegative.
(V) There is a matrix R such that A = RTR.

* If A isan nXn symmetric positive definite matrix, then x! Ax is an in
R". It is an when n = 2.

» Theorem 6.4 (Shape of Ellipsoid)

Suppose A is positive definite with spectral decomposition A = QAQT. Then
y = QTx simplifies the ellipsoid x’ Ax = 1. More specifically, y' Ay is the
equation of the simplified ellipsoid. Its axes have lengths %, ) % from

the center, where A; are eigenvalues. In the original x-space, they point along
the eigenvectors of A.

» Theorem 6.5 (Singular Value Decomposition)

Let A be an m X I matrix with rank r. There exist an m X m orthogonal matrix
U, an m X [ diagonal matrix X and an [ X [ orthogonal matrix V such that

A =UxvT, (6.8)
— The columns of U are eigenvectors of AAT.

— The columns of V are eigenvectors of ATA.
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— There are r nonzero values in the diagonal of X, and they are the square
roots of the common nonzero eigenvectors of both AAT and ATA.

— AAT and AT A share distinct eigenvectors. More concretely, suppose x # 0
in an eigenvector of AT A, that is, AT Ax = Ax. Then, we have AAT(Ax) =
A(Ax). That is, Ax is an eigenvector of AAT with the same eigenvalue.

—LetU:[u1 -~-um],V:[V1 -~-vl],and
01

¥ = . (6.9)
Oy

From A = UZV', we have AV = UZX. That is,
AVi =o;u; (610)
fori=1,2,..,r. We have the freedom to choose u; and v;, but 6.10 must

hold.
— A procedure to compute SVD
* Compact SVD
1. Compute the eigenvalues and eigenvectors of AT A.

2. The nonzero eigenvalues and corresponding eigenvectors of AT A forms
columns of V = [vl vr].

3. Compute the r columns of U by

1 1
= —Av; = —Av,. 6.11
u; o Vi \//\—1 Vi ( )
x Full SVD
1. Compute the eigenvalues and eigenvectors of ATA

2. The nonzero eigenvalues and corresponding eigenvectors of AT A forms
columns of V = [vl fe vr].

3. Compute the 7 columns of U by 6.11.
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4. Put the corresponding eigenvectors of zero eigenvalues of ATA in V.
5. Put the corresponding eigenvectors of zero eigenvalues of AAT in U.

 Theorem 6.6 (Basis for 4 Fundamental Subspaces)

Let A be an m X [ matrix with rank 7. Let A = ULV be a singular value
decomposition. Then Uand V give orthonormal basis for all four fundamental
subspaces:

— First 7 columns of U forms a basis for C(A)

— Last m — r columns of U forms a basis for N(AT)
— First 7 columns of V forms a basis for C(AT)

— Last [ — 7 columns of V forms a basis for N(A)

» Theorem 6.7 (Polar Decomposition)
Every real square matrix can be factorized into A = QS, where Q is orthog-
onal and S is symmetric positive semidefinite. If A is intertible, then S is
symmetric positive definite.

Proof.| Use SVD on A, we have A = ULV = UVIVEVT, Therefore, we

cantake Q = UVT and S = VEVT. On page 17, we proved the nullspace of
ATA and A are the same. Therefore, if A is invertible, AT A is also invertible.
Therefore, there would not be any zero on the diagonal of X. That is, S is
positive definite.

If A is invertible, so is S = VEVT. Then, Q = AS™L,

o Let A be an m X [ matrix with SVD A = ULVT. Then its At
is given by At = VEYUT, where

(6.12)

The size of 7 is equal to that of xT,

» Theorem 6.8 (Characterization of Pseudoinverse)
Let A be an m X[ matrix. Its pseudoinverse A* is an [ Xm matrix characterized
by the following properties:
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— AA*TA=A
— ATAAT = A"
— Both A*A and AA™ are symmetric.

Even though A = UL VT is not unique, A* is unique.

— Properties

% If A is invertible, then A* = A1,

Proof.| Because A is invertible, we know AA* = I. Therefore, A* =

A~ since the inverse of A is unique.
* (ANt = A
" (AT)+ — (A+)T
% (cCA)Y =cTATifc#0

* The optimal solution of Ax = b is the minimum length solution of AT Ax =
ATb. It is called , which is denoted by x*.

— The shortest solution x* is unique and in the row space of A.

— The shortest solution x* to Ax = b is x™ = A*b.

7 Computation with Matrices

e Condition number and Relative Error

In Ax = b, suppose we add some small perturbation 6A to x. We want to
analyze how much the product changes with respect to 0A. That is, how big
Ob is in
A(x + 6x) = b + 6b. (7.1)
ox| l16b]
. 20 oy - A go0d

is not large compared to ”||b||”

We model the change by comparmg the relative errors ——

linear system should guarantee that L2 ox ”

— Theorem 7.1 (Condition Number for Positive Definite Matrices)
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Let A be an n X n symmetric positive definite matrix. The solution x =
A~1b and the error 6x = A71(5b) always satisfy

Ibl|
Il < 20 (7.2)
Amax
|[bl|
|lox]| < FR (7.3)
min
Ox A ob
I || < Mmax llob| (7.4)
[I]] Amm bl -
The ratio ¢ = imﬁ is the condition number of a positive definite matrix
min
A.

Proof.| Because A is positive definite, it is invertible. Suppose its eigen-

vectors are given by
Atz At > 2 A0 >0, (7.5)

and the corresponding orthonormal eigenvectors are given by vy, vy, ..., v,,.
Let 6b = ¢;vq + cpvy + -+ + ¢, vy, then

ox = A_l(éb) = ClA_1V1 + C2A_1V2 + ot CnA_lvn (76)
= C1/\11V1 + C2/\£1V2 + - 4+ cn/\,zlvn. (7.7)
It can be seen that

|6b|I? = c% + cg +oe c,%, (7.8)

Therefore, we can write
(c% + c% + o+ 2)A2< |0x]? < (c% + c% + e+ c,%)/\fz (7.10)
=||6b|2A;;2 < [I6x|? < ||ob|[PAT2 (7.11)
[Ib]IA;! < [16xIl < [I5blIATL. (7.12)

— The of matrix A is the number ||Al| defined by
IIAXII

Al = (7.13)

0 Tl
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% The matrix norm bounds the amplifying power of a matrix. That is,
|| < [|A]l - [Ix]|.

« For positive definite matrix A, |[All = Apax-
— The of A is

IA]l- JA7Y]], if A is invertible,
c= . (7.14)
0, it A is singular.
— Theorem 7.2 (Condition Number and Relative Error 1)
The relative error 6x from 6b : A(x + 0x) = b + Ob satisfies
16x]] _ lIobl|
e o G, 7.15
lIxI] [Ibll (7.15)
where c is the condition number of A.
— Theorem 7.3 (Condition Number and Relative Error Il)
The relative error Ox from 0A : (A + 0A)(x + Ox) = b satisfies
1ol [IoAl

<0
lIx + Ox|| Al
where ¢ is the condition number of A.

(7.16)

— Theorem 7.4 (Computation of Matrix Norm)

The norm of matrix A is given by

IAll = \[Amax(ATA). (7.17)

The norm of matrix A~! is given by

1A = /A in(ATA)L (7.18)
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A Concepts

* consistent

* inconsistent

* singular

¢ Identity matrix

* Augmented matrix

* Gaussian elimination
* Pivot positions

» Pivots

* inverse

* Gaussian-Jordan method
® transpose

* vector space

* subspace

* spanning set

* column space

* nullspace

* homogeneous

¢ echelon matrix

* row reduced echelon matrix (form)

* pivot variables
o free variables
¢ linearly independent

* basis

* maximum independent set

* minimal spanning set
* dimension

e rank

 nullity

* particular solution

* transformation
 standard basis

» standard matrix

e coordinate

@ 0 0 0 0 0 N N N NN N oy A AN

_ e e
N N =R = O

inner product
orthogonal

orthogonal basis
orthonormal basis
orthogonal complement
Projection formula

orthogonal projection

orthogonal projection matrix

orthogonal complement
least-square

least square error
normal equation
complex number
Fourier transform
Fourier coefficients
Fourier matrix

Fast Fourier Transform
cofactor

determinant

cofactor expansion
adjugate

cofactor matrix
parallelpiped
eigenvector

eigenvalue

eigenspace
characteristic polynomial
trace

similar

geometric multiplicity
algebraic multiplicity
matrix exponential

fundamental solutions
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15
15
15
15
16
16
16
17
17
20
20
20
24
24
25
25
26
27
27
27
31
31
32
33
33
33
33
33
36
37
37
37
39



general solution
particular solution
stable

neutrally stable
unstable

frequency

decay rate

conjugate transpose
Hermitian
Hermitian matrix
skew-Hermatian
unitary matrix
similar

similarity transformation
Schur decomposition
normal

Jordan block

Jordan form
stationary point
critical point
quadratic form
positive definite
negative definite
positive semidefinite
negative semidefinite
quadratic part

pure quadratic form
positive definite
negative definite
positive semidefinite
negative semidefinite
Law of inertia
ellipsoid

ellipse

pseudoinverse

39
39
41
41
41
42
42
43
43
43
43
45
46
46
47
49
51
52
54
54
54
54
54
54
54
55
55
55
55
55
55
56
57
57
59

* shortest least-squares solution
* norm

* condition number
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